Векторная диаграмма напряжений для неразветвленной цепи

Расчет неразветвленных цепей переменного тока

Порядок расчета, установленный для цепи при последовательном соединении катушки и конденсатора, можно применить и для цепи, содержащей произвольное число катушек и конденсаторов, соединенных последовательно.

На рис. 14.7, а для примера дана схема неразветвленной цепи, состоящей из пяти участков: конденсатора (R1 Х1) и катушки (R2, Х2), представленных активными и реактивными сопротивлениями; резистора R3; идеальных конденсатора Х4 и катушки Х5.

Предположим, что кроме сопротивлений известен ток в цепи i = Imsinωt. Требуется найти напряжения на участках, общее напряжение в цепи и мощность.

Векторная диаграмма

Произвольно выберем условно-положительное направление тока i, в данном случае по часовой стрелке. Для мгновенных величин в соответствии со вторым законом Кирхгофа уравнение напряжений (а — падение напряжение на активном сопротивлении; р — падение напряжения на реактивном элементе )

Для действующих величин необходимо записать векторную сумму:

Численно векторы напряжений определяются произведением тока и сопротивления соответствующего участка. На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения
напряжения на каждом участке схемы, причем направления их относительно веrтора тока выбраны в соответствии с характером сопротивления участков.

При построении диаграммы напряжений выбрана начальная точка 6 совпадающая с началом вектора тока i. Из этой точки проведен вектор U5.2 реактивного напряжения индуктивности (по фазе опережает ток на 90°) между точками 5 и 6 цепи. Из конца его проведен вектор U реактивного напряжения емкости (по фазе отстает от тока на 90° ) между точками 4 и 5 цепи. Затем отложен вектор U3a активного напряжения на резисторе (совпадает по фазе с током) между точками
3 и 4 цепи и т. д., если следовать по цепи против направления тока.Точки векторной диаграммы, где сходятся начало следующего вектора с концом предыдущего, обозначены теми же номерами, какими на схеме обозначены точки, отделяющие одни элемент от другого.

При таком, построении напряжение между любыми двумя точками цепи можно найти по величине и фазе, проведя вектор на диаграмме между точками с теми же номерами. Например, напряжение U5.2 между точками 5 и 2 выражается вектором, проведенным из точки 2 в точку 5 (вектор U2.5 направлен в обратную сторону); напряжение U3.1 между точками 3 и 1 выражается вектором, проведенным из точки
1 в точку 3.

Векторная диаграмма, построенная в соответствии с чередованием элементов цепи, называется топографической, так как точки, отделяющие векторы друг от друга, соответствуют точкам, разделяющим элементы схемы.

Расчетные формулы

Из векторной диаграммы видно, что все активные составляющие векторов напряжений направлены одинаково — параллельно вектору тока, поэтому векторное сложение их можно заменить арифметическим и найти активную составляющую напряжения цепи: Ua = U1a + U2a + U3a

Реактивные составляющие векторов напряжений перпендикулярны вектору тока, причем индуктивные напряжения направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая напряжения цепи Up определяется их алгебраической суммой, в которой индуктивные напряжения считаются положительными, а емкостные — отрицательными: Up = — U + U2p — U4p + U5p.

Векторы активного, реактивного и полного напряжений цепи образуют прямоугольный треугольник, из которого следует

Подставив падения напряжения, выраженные через ток и соответствующие сопротивления, получим:

Таким образом снова получена знакомая уже формула, связывающая ток, напряжение и полное сопротивление цепи [ср. (14.4) и (14.1)].

В этой формуле ∑Rn—общее активное сопротивление, равное арифметической сумме всех активных сопротивлений, входящих в неразветвленную цепь; ∑Xn — общее реактивное сопротивление, равное алгебраической сумме всех реактивных сопротивлений, входящих в неразветвленную цепь. В этой сумме индуктивные сопротивления считаются положительными, а емкостные — отрицательными. Полное сопротивление неразветвленной цепи

В общем случае полное сопротивление цепи определяется как гипотенуза прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активное и реактивное сопротивления всей цепи. Из треугольника сопротивлений следует:

От треугольника напряжений можно перейти также к треугольнику мощностей и получить уже известные формулы для определения мощностей в цепи:

Вместе с тем активную мощность цепи можно представить как арифметическую сумму активных мощностей в элементах с активным сопротивлением. Реактивная мощность цепи равна алгебраической сумме мощностей реактивных элементов.

В этой сумме мощность индуктивных элементов считается положительной, а емкостных — отрицательной:

Формулы (14.2)—(14.7) являются общими; из них можно получить конкретное выражение для любой неразветвленной цепи.

Источник

2. 11. Неразветвленная цепь синусоидального тока

В неразветвленной цепи (рис. 2. 23) при действии источника синусоидальной ЭДС e = Emsin (wt+ ye) ток также синусоидален: i = Imsin (wt+ yi) и напряжения на резистивном, индуктивном и емкостном элементах

Для расчета режима работы неразветвленной цепи комплексным методом представим все синусоидальные величины соответствующими комплексными по (2. 21):

На рис. 2. 23 стрелками изображены положительные направления тока, ЭДС и напряжений.

Выберем направление обхода контура и запишем уравнение по второму закону Кирхгофа (2. 41):

здесь учтен закон Ома для резистивного (2.29), индуктивного (2.32) и емкостного (2.36) элементов.

Из (2. 43) найдем комплексный ток в цепи:

где. напряжение между выводами источника

Величина, стоящая в знаменателе выражения для комплексного тока (2.44), называется комплексным сопротивлением (неразветвленного участка цепи):

Величина, обратная комплексному сопротивлению, называется комплексной проводимостью:

Каждому значению комплексного сопротивления Z, т. е. комплексному числу, соответствует точка на комплексной плоскости. Ее положение однозначно определяется вектором на комплексной плоскости (рис. 2. 24). Этот вектор является геометрической интерпретацией комплексного сопротивления и имеет такое же обозначение Z. Слагаемые комплексного сопротивления изображены на рис. 2. 24 также в виде векторов для двух случаев: xL > хC. (рис. 2. 24, а) и xL j j = z L j, (2. 45в)

где. — модуль комплексного сопротивления или полное сопротивление;. — аргумент

комплексного сопротивления. В зависимости от знака величины (xLxC) аргумент комплексного сопротивления может быть либо

положительным (j > О индуктивный характер комплексного сопротивления, как на рис. 2. 24, a), либо отрицательным (j хC (рис. 2. 25, а) и xL 0 (рис. 2. 24, а) и по (2. 47) yi yu. На векторной диаграмме положительное значение угла y отсчитывается против направления движения часовой стрелки от вектора комплексного значения тока I; а отрицательное значение — по направлению движения часовой стрелки.

При нескольких последовательно соединенных резистивных индуктивньх и емкостных элементах комплексное сопротивление

где r = SRактивное сопротивление и x = SxL — sxcреактивное сопротивление этой неразветвленной цепи. В активном сопротивлении происходит необратимое преобразование электрической энергии в другие виды энергии, а в реактивном сопротивлении необратимых преобразований нет.

Введенные здесь понятия об активном и реактивном сопротивлениях неразветвленной цепи применяются и для характеристики более сложных цепей. В общем случае можно говорить об активном и реактивном сопротивлениях любой пассивной цепи синусоидального тока, имеющей два вывода, т. е. пассивного двухполюсника.

Напряжение на элементах схемы замещения, соответствующих активному или реактивному сопротивлению цепи, называется падением напряжения.

Выражению (2.48) соответствуют треугольники сопротивлений на комплексной плоскости. На рис. 2.26, а и б построены треугольники сопротивлений при х > 0 и х 15 / 92 15161718192021222324252627> Следующая >>>

Источник

Читать так же:  Резонанс в электрической цепи добротность
Оцените статью
Всё о бурение