Резонанс в электрической цепи добротность

Резонанс в электрической цепи добротность

откуда резонансная частота w р —

Анализ выражения (21) показывает, что при разных резистивных сопротивлениях R 1 № R 2 резонанс возможен только, если оба сопротивления одновременно больше или меньше r . В противном случае выражение под корнем отрицательно, резонансная частота мнимая и не имеет физического смысла.

Если R 1 = R 2 , то w р = w 0 , т.е. резонанс наступает при той же частоте, что и в простейшем контуре без потерь (рис. 8 а)).

Однако при этом условии возможен вариант, когда R 1 = R 2 = r . В этом случае подкоренное выражение в (21) становится неопределенным (0/0) и требуется его дополнительный анализ.

Ветви контура соединены параллельно и общее падение напряжения на них одинаково и равно сумме падений напряжения на элементах ветви. При любых изменениях частоты угол между напряжением на резисторе и реактивном элементе составляет 90 ° и т.к. сумма их постоянна и равна входному напряжению, то геометрическим местом точек конца вектора падения напряжения на резисторе будет полуокружность (рис. 11 а)). Причем, векторы ветви с индуктивностью будут вписываться в нижнюю полуокружность, а ветви с емкостью — в верхнюю. Входной ток I равен сумме токов ветвей I 1 и I 2 и резонанс наступает, если его направление совпадает с вектором входного напряжения U .

Разделим комплексные числа, соответствующие векторам напряжений рис. 11 а), на R = R 1 = R 2 = r и построим векторную диаграмму токов для режима резонанса (рис. 11 б)), т.е. так, чтобы сумма векторов I 1 и I 2 была равна U /R . Параллелограмм abcd имеет два противоположных прямых угла, поэтому два других угла j 1 + j 2 = p /2 . То, что сумма углов j 1 и j 2 равна 90 ° доказывается также и тем, что . Таким образом, при любой частоте векторы токов I 1 и I 2 образуют прямоугольник, вершины которого расположены на окружности, а диагональю является вектор U /R . Отсюда следует, что при всех частотах входной ток одинаков, совпадает по направлению с напряжением и полное сопротивление цепи чисто резистивное и равно r .

Читать так же:  Замена цепи грм mercedes 272

Источник

Что такое добротность контура

Электрическая цепь — предназначена не только для передачи тока и напряжения от источника к потребителю. В данной электроцепи возникают определенные физические процессы, которые связаны с влиянием ее элементов на протекание данного тока.

В этой статье будет описано, что такое добротность контура. Кроме того будет приведена формула для расчета этой величины, схемы последовательного и параллельного контуров.

Определение

Физика дает следующее определение добротности. Добротностью называют параметр колебательной системы, который определяет ширину резонанса и характеризует, насколько запасы энергии в системе больше возникающих ее потерь во время изменения фазы на один радиан. Дело в том, что данный показатель определяет разницу вынужденных колебаний при резонансе с определенной амплитудой колебаний на каком-то удалении от места резонанса. При этом амплитуда вынужденных колебаний не имеет никакой зависимости от их частоты. Параметр находит применение не только при расчетах электрических цепей. Его применяют так же в механике, акустике и химии.

Добротность колебательной системы в англоязычных ресурсах называют Quality factor и обозначают буквой «Q». Данная величина является основной характеристикой всех колебательных систем, но сделать измерения данной величины невозможно, ведь ее можно только вычислить, используя различные формулы. Степень идеальности имеет прямое влияние на коэффициент потерь энергии за время одного колебательного периода. Чем меньше величина, тем выше потери самой энергии. Данное значение обратно пропорционально скорости затухания собственных колебаний системы.

Получается, что колебательный контур является разницей между входящим реактивным сопротивлением и выходящим активным. Если в колебательном контуре имеется емкость C, индуктивность L и нагрузка R, то для расчета Q используется формула:

В данной формуле за резонансную частоту электроцепи ω0 отвечает показатель 1/R.

Параметр добротности измеряется при настройке генератора электросигналов на частоту резонансных колебаний. Сама частота резонанса равна максимальному выходному напряжению такой цепи.

Параллельный контур

Добротность любого параллельного колебательного контура предполагает наличие цепи, в которой имеется емкость, нагрузка и индуктивность, соединенные параллельно. Они образуют так называемую RLC-схему.

Определяющая величина для такой схемы — это проводимость конденсатора с катушкой. Именно она суммируется при расчетах и является реактивной проводимостью параллельного колебательного контура. На резонансной частоте проводимость катушки с конденсатором будут равны, а общая разница при этом равняется 0. Для расчета такой цепи используется формула:

При этом стоит учитывать следующее:

  1. Не принимается во внимание емкостная паразитная характеристика катушки индуктивности, но учитывается добротность индуктивного элемента. Она соответствует выражению:
  2. Также учитывается добротность конденсатора, использующегося в такой электроцепи. Потери в конденсаторе связаны с наличием диэлектрика в его конструкции. Добротность конденсатора вместе с имеющимися потерями, напрямую связаны с потерями энергии на его диэлектрике tgδ. Данный коэффициент определяем с помощью такого выражения:
  3. На резонансной частоте к переменному току прилагается бесконечное сопротивление.
  4. В реальной RLC-цепи отсутствует бесконечное сопротивление, но этот параметр при увеличении сопротивления контура значительно снижается.

В параллельном колебательном контуре резонансная частота является той частотой, при которой реактивное сопротивление равняется 0, а величина входящего сопротивления является активным. Отсюда можно сделать вывод, что отсутствует фазовый сдвиг между током и напряжением.

Последовательный контур

Для последовательного колебательного контура характерно наличие последовательного соединения емкости с индуктивностью. При этом эти два элемента не влияют на потери энергии в цепи и являются идеальными элементами.

Потери в данной схеме вызваны только наличием активной нагрузки. Ниже представлен график амплитудно-частотной характеристики такой схемы.

Для такой цепи сопротивление катушки и конденсатора являются паразитными, приводят к появлению резонанса. Данный резонанс выравнивает или обнуляет сопротивления, оставляя только влияние активной нагрузки R от резистора. При этом добротность такой электроцепи определяется, как разницу напряжений на источнике тока и выходах катушки/конденсатора. В этом случае Q определяют с помощью следующего выражения:

  1. С — емкость конденсатора.
  2. L — индуктивность катушки.
  3. R — потери сопротивления.

Для примера попробуем решить следующую задачу. В цепи имеется катушка индуктивности L=100 мГн с сопротивлением R=100 Ом, которая соединена последовательно с конденсатором емкостью C=0.07 мкФ. Найдите резонансную частоту ω0, характеристическое сопротивление и добротность колебательного контура.

Вычисляем резонансную частоту контура:

Определяем характеристическое сопротивление:

Конечный шаг — вычисление добротности контура:

Заключение

В статье было дано краткое описание, что такое добротность контура и чему параметр равен для различных вариантов контура (параллельного, последовательного). Данная характеристика цепи и ее составных элементов играет ключевое значение при определении потерь от включения в нее различных конденсаторов, катушек и активных резисторов. С помощью добротности можно определить разницу между входным и выходным напряжениями электроцепи.

Видео по теме

Источник

Резонанс в электрической цепи добротность

Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.

В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.

Резонансные системы имеют два важных свойства.

Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $\omega _ <0>$ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.

На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =\frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =\frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.

Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а). Согласно второму закону Кирхгофа для такой цепи можно написать: $$ R\cdot I+U_ =-L\cdot \frac

. $$ Выражая $U_ $ через заряд $q$, получим уравнение

$$ R\cdot I+L\cdot \frac

+\frac =0 \ \ \ \mbox < (СИ). >$$ Дифференцируя по времени и учитывая равенство $I=\frac
$, получаем $$ L\frac I> > +R\frac
+\frac =0 \ \ \ \mbox < (СИ). >$$ Разделив на $L$ и вводя обозначения $\delta =\frac <2\cdot L>$ и $\omega _<0>^ <2>=\frac<1> $, получим общее уравнение для свободных колебаний линейной резонансной системы: $$ I»+2\delta \, I’+\omega _<0>^ <2>I=0, $$ где параметр $\delta $ называется затухание, а параметр $\omega _ <0>$ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=A\cdot e^ $, которая приводит к характеристическому уравнению $$ -\omega ^ <2>+2i\omega \, \delta +\omega _<0>^ <2>=0, $$ с решением $$ \lambda \, _ <1,2>=i\, \delta \pm \sqrt<\omega _<0>^ <2>-\delta ^ <2>> . $$ Общее решение имеет две составляющие $$ I=A\cdot e^ \, t> +B\cdot e^ \, t> . $$ Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_ <0>$ или напряжением на конденсаторе $U_ <0>$. Характер начальных данных определяется конкретной физической системой.

Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_ <0>$ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.

Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре $$ I=i\frac >^ <2>-\delta ^ <2>> > e^ <-\delta \, t>\frac^ <2>-\delta ^ <2>> \, t> -e^<-i\sqrt<\omega _<0>^ <2>-\delta ^ <2>> \, t> > <2>. $$

Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $\omega _ <0>=2\pi \, f=\sqrt<\frac<1>>.$

Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $\tau $. Роль частоты в уравнении теперь играет величина $\omega _

=\sqrt<\omega _<0>^ <2>-\delta ^ <2>> $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.

Если затухание мало, т. е. $\delta \omega _ <0>$, величина $\omega _<0>^ <2>-\delta ^ <2>$ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид $$ I=-\frac > -\omega _<0>^ <2>)> > e^ <-\delta \, \, t>\mbox\sqrt <(\delta ^<2>-\omega _<0>^ <2>)> \, t. $$ График этой функции приведен на рис. 21. Критическим условием, при котором затухающие колебания переходят в апериодический процесс, является условие $\delta =\omega _ <0>$. В этом случае решение общего уравнения имеет вид $$ I=-\frac > <\omega L>(\omega t)e^ <-\delta \, t>\, =-\frac > t\, e^ <-\delta \, t>. $$ Остается добавить, что аналогичные параметры могут быть введены для любой резонансной колебательной системы независимо от ее физической природы (механические, термодинамические, электромагнитные, оптические, аэро– и гидродинамические системы).

Вынужденные колебания

Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.

В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б). В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.

Вынужденные колебания в последовательном контуре, резонанс напряжений

Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде $$ U=U_ +U_ +U_ =IR+iI(\omega L-\frac<1> <\omega C>)=I\cdot Z. $$ Контур представляет для генератора некоторое комплексное сопротивление $$ Z=R_L +i\cdot (\omega L-\frac<1> <\omega C>), $$ $$ \left|Z\right| = \sqrt<\omega C>)^2>, \ \ \ \ \mbox\varphi =\frac<\omega L-\frac<1> <\omega C>> $$ где $\left|Z\right|$ — модуль комплексного сопротивления; $R_$ — омическое сопротивление катушки индуктивности; $\varphi $ — сдвиг фазы между активным и реактивным сопротивлениями, равный сдвигу фазы между током $I$ в цепи и входным напряжением $U$.

Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_ $ на некоторой частоте $\omega _ <0>$, определяемой условием $$ \omega _0 L=\frac<1> <\omega _0 C>, \ \ \ \mbox < где >\ \ \ \omega _ <0>=\frac<1><\sqrt> \ \ \ \mbox < (СИ).>$$ Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.

Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.

Поскольку фазы $U_ $ и $U_ $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^<\circ>$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений $$ U_ =IR, \ \ U_ =I\omega L, \ \ U_ =\frac<\omega C>, \ \ I=\frac . $$

Для примера раскроем уравнения для $I$ и $U_ $. Используя введенное для свободных колебаний понятие добротности $Q=\left(\omega _ <0>RC\right)^<-1>$, получим следующее выражение для тока в последовательном контуре: $$ I=\frac <\sqrt+(\omega L-\frac<1> <\omega C>)^ <2>> > =\frac \frac<1> <\sqrt<1+Q^<2>(\frac<\omega > <\omega _<0>> -\frac <\omega _<0>> <\omega >)^ <2>> > . $$ Тогда напряжение на индуктивности будет равно $$ U_ =\omega LI=U\frac <\omega _<0>> > <\sqrt<1+Q^<2>(\frac<\omega > <\omega _<0>> -\frac <\omega _<0>> <\omega >)^ <2>> > . $$

Аналогичное уравнение можно получить для напряжения на $C$. При $\omega =\omega _ <0>$ напряжения на $L$ и $C$ будут равны $U_ =U_ =Q\cdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.

На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями: $$ \omega _ =\omega _ <0>\sqrt<\frac<2> <2-\fracC> > > =\omega _ <0>\sqrt<\frac<2><2-\left(\frac<1> \right)^ <2>> > , \ \ \ \omega _ =\frac<\omega _<0>^ <2>> <\omega _> . $$

При добротности контура $Q \ge 10$ сдвиг частот максимумов $U_ $ и $U_ $ относительно резонансной частоты $\omega _ <0>$ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_ $ и $U_ $. Напряжение на реактивных элементах $U_ $ и $U_ $ при $\omega =\omega _ <0>$ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.

Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.

Вынужденные колебания в параллельном контуре, резонанс токов

Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.

Комплексное сопротивление параллельного контура равно $$ Z=\frac Z_ <2>> +Z_ <2>> = \frac <(R_+i\omega L)(i\omega C)^<-1>> +i(\omega L-(\omega C)^ <-1>)> \approx \frac> +i(\omega L-(\omega C)^<-1>)> . $$

Мы пренебрегли величиной $R_ $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.

Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$: $$ \omega _ <0>L=\frac<1> <\omega _<0>C>, \ \ \mbox < где >\ \ \omega _ <0>=\frac<1> <\sqrt> \ \ \mbox < (СИ). >$$ Таким образом, при резонансе сопротивление контура становится чисто активным и равным $$ R_ <э>=\frac < C R_> =\frac <\rho ^<2>> > , $$ где — $\rho =\sqrt <\frac LC>$ волновое сопротивление контура.

Сопротивление $R_ <э>$ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $\rho $ и сопротивления потерь $R_ $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_ <э>$, а в формулах символическая запись определенной комбинации $\rho $ и $R_ $, даваемой последней формулой.

Добротность параллельного контура $$ Q=\frac <\omega _<0>L> > =\frac<1> \omega _ <0>C> =\frac > <\rho >=R_ <э>\sqrt<\frac > . $$

Собственные параметры параллельного контура, т.е. резонансная частота $\omega _ <0>$ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_.$

Источник

Оцените статью
Всё о бурение