Установившейся режим для цепи из одних резисторов

1.Установившиеся и переходные процессы в электрических цепях

Установившимся процессом электрической цепи называется процесс, создаваемый источниками ЭДС и тока постоянными или изменяющимися во времени по периодическому закону, который продолжается в течение любого заданного времени.

Переходным процессом в электрической цепи называется процесс изменения во времени токов в ветвях и напряжений на элементах цепи, вызванный коммутацией.

Коммутация — это включение, отключение, переключение элементов цепи (источников ЭДС и тока, резисторов, катушек индуктивности и конденсаторов), изменение параметров элементов цепи и т. п. Считается, что коммутация происходит мгновенно.

Переходный процесс может возникнуть в цепи только при наличии в ней таких элементов, как катушки индуктивности и конденсаторы, и определяет после коммутации перераспределение энергии между источником, катушками индуктивности и конденсаторами. Такие элементы называют независимые накопители энергии. Если цепь состоит только из резисторов, то после коммутации сразу возникает установившийся режим. Переходный процесс начинается с момента возникновения коммутации (время t = 0) и протекает между установившимся процессом до коммутации и установившимся процессом после коммутации. Момент времени непосредственно перед коммутацией обозначается t = 0, а сразу после коммутации – t = 0+ или t = 0. Длительность переходного процесса равна бесконечности, но для большинства практических задач можно принять, что переходный процесс заканчивается, если искомая величина переходного тока или напряжения отличается от установившегося значения менее чем на 5%. Так определяется, приближённо, время переходного процесса tПП.

Рассмотрим, например, изменение напряжения на конденсаторе uC(t) и тока в цепи i(t) при переключении ветви с последовательным соединением резистора индуктивности и ёмкости с источника постоянного напряжения E1 на источник E2 (рис. 2).

На рис. 3 изображены графики изменения напряжения на конденсаторе uC(t) и тока ветви i(t). Колебательный характер процесса получается при определённом сочетании значений сопротивления, индуктивности и ёмкости. На графиках показаны области: установившийся до коммутационный процесс t = (–∞, 0) переходный процесс t = (0+, tПП) и установившегося после коммутационного процесс (принуждённый режим) t = (tПП, ∞).

— длительность импульса (u(t) = U);

— длительность паузы (u(t) = 0);

— период следования импульсов;

— частота генератора.

Переходные процессы в большинстве случаев являются кратковременными и однократными. Расчет и непосредственное наблюдение переходных процессов на мониторе или экране осциллографа удобно проводить, если подключить цепь к источнику периодических сигналов прямоугольной формы (рис. 4). Длительность импульса должна выбираться такой, чтобы переходный процесс заканчивался за время . Передний фронт импульса соответствует включению цепи на постоянное напряжение, а задний – уменьшению напряжения источника до нуля. Длительность паузы должна выбираться так, чтобы в исследуемых схемах значения токов в катушках индуктивности и напряжения на конденсаторах уменьшились до нуля. Это обстоятельство позволяет наблюдать на экране монитора переходный процесс при включении или отключения цепи на постоянное напряжение, а также найти установившиеся значения исследуемых токов и напряжений до и после коммутации.

Источник

Переходные процессы в электрической цепи

Переходные процессы не являются чем-то необычным и характерны не только для электрических цепей. Можно привести ряд примеров из разных областей физики и техники, где случаются такого рода явления.

Например, налитая в сосуд горячая вода постепенно охлаждается и ее температура изменяется от начального значения до установившегося, равного температуре окружающей среды. Выведенный из состояния покоя маятник совершает затухающие колебания и, в конце концов, возвращается в исходное стационарное неподвижное состояние. При подключении электроизмерительного прибора его стрелка перед остановкой на соответствующем делении шкалы совершает вокруг этой точки шкалы несколько колебаний.

Установившийся и переходный режим электрической цепи

При анализе процессов в электрических цепях приходится встречаться с двумя режимами работы: установившемся (стационарным) и переходным .

Установившимся режимом электрической цепи, подключенной к источнику постоянного напряжения (тока), называется режим, при котором токи и напряжения в отдельных ветвях цепи неизменны во времени.

В электрической цепи, подключенной к источнику переменного тока, установившийся режим характеризуется периодическим повторением мгновенных значений токов и напряжений в ветвях . Во всех случаях работы цепей в установившихся режимах, которые теоретически могут продолжаться неограниченно долгое время, предполагается, что параметры воздействующего сигнала (напряжения или тока), а также структура цепи и параметры ее элементов не изменяются.

Токи и напряжения установившегося режима зависят от вида внешнего воздействия и от параметров электрической цели.

Переходным режимом (или переходным процессом ) называется режим, возникающий в электрической цепи при переходе от одного стационарного состояния к другому, чем-либо отличающемуся от предыдущего, а сопутствующие этому режиму напряжения и токи — переходными напряжениями и токами . Изменение стационарного режима цепи может происходить в результате изменения внешних сигналов, в том числе включения или отключения источника внешнего воздействия, или может быть вызвано переключениями внутри самой цепи.

Любое изменение в электрической цепи, приводящее к возникновению переходного процесса называют коммутацией .

Коммутация электрической цепи — процесс переключений электрических соединений элементов электрической цепи, выключения полупроводникового прибора (ГОСТ 18311-80).

В большинстве случаев теоретически допустимо считать, что коммутация осуществляется мгновенно, т.е. различные переключения в цепи происходят без затраты времени. Процесс коммутации на схемах условно показывается стрелкой возле выключателя.

Переходные процессы в реальных цепях являются быстропротекающими . Их продолжительность составляет десятые, сотые, а часто и миллионные доли секунды. Сравнительно редко длительность этих процессов достигает единицы секунды.

Естественно возникает вопрос, надо ли вообще принимать во внимание переходные режимы, имеющие столь короткую длительность. Ответ может быть дан только для каждого конкретного случая, так как в различных условиях роль их неодинакова. Особенно велико их значение в устройствах, предназначенных для усиления, формирования и преобразования импульсных сигналов, когда длительность воздействующих на электрическую цепь сигналов соизмерима с продолжительностью переходных режимов.

Переходные процессы являются причиной искажения формы импульсов при прохождении их через линейные цепи. Расчет и анализ устройств автоматики, где происходит непрерывная смена состояния электрических цепей, немыслим без учета переходных режимов.

В ряде устройств возникновение переходных процессов, в принципе, нежелательно и опасно. Расчет переходных режимов в этих случаях позволяет определить возможные перенапряжения и увеличения токов, которые во много раз могут превышать напряжения и токи стационарного режима. Это особенно важно для цепей со значительной индуктивностью или большой емкостью.

Причины возникновения переходного процесса

Рассмотрим явления, возникающие в электрических цепях при переходе от одного установившегося режима к другому.

Включим лампу накаливания в последовательную цепь, содержащую резистор R1 , выключатель В и источник постоянного напряжения Е. После замыкания выключателя лампа сразу же загорится, так как разогрев нити и нарастание яркости ее свечения на глаз оказываются незаметными. Можно условно считать, что в такой цепи ток стационарного режима, равный I о= E/(R1+R л), устанавливается практически мгновенно, где R л — активное сопротивление накаленной нити лампы.

В линейных цепях, состоящих из источников энергии и резисторов, переходные процессы, связанные с изменением запасенной энергии, вообще не возникают.

Рис. 1. Схемы цепей для иллюстрации переходных процессов: а — цепь без реактивных элекментов, б — цепь с катушкой индуктивности, в — цепь с конденсатором.

Заменим резистор катушкой L , индуктивность которой достаточно велика. После замыкания выключателя можно заметить, что нарастание яркости свечения лампы происходит постепенно. Это свидетельствует о том, что из-за наличия катушки ток в цепи постепенно достигает своего установившегося значения I ‘о= E/(r к +R л), где r к— активное сопротивление обмотки катушки.

Следующий эксперимент проведем с цепью, состоящей из источника постоянного напряжения, резисторов и конденсатора, параллельно которому подключим вольтметр (рис. 1,в). Если емкость конденсатора достаточно велика (несколько десятков микрофарад), а сопротивление каждого из резисторов R1 и R 2 несколько сотен килоом, то после замыкания выключателя стрелка вольтметра начинает плавно отклоняться и только через несколько секунд устанавливается на соответствующем делении шкалы.

Следовательно, напряжение на конденсаторе, а также и ток в цепи устанавливаются в течение относительно продолжительного промежутка времени (инерционностью самого измерительного прибора в данном случае можно пренебречь).

Что же препятствует мгновенному установлению стационарного режима в цепях рис. 1,б, в и служит причиной возникновения переходного процесса?

Причиной этому являются элементы электрических цепей, способные запасать энергию (так называемые реактивные элементы): катушка индуктивности (рис. 1,б) и конденсатор (рис. 1,в).

Возникновение переходных процессов связано с особенностями изменения запасов энергии в реактивных элементах цепи . Количество энергии, накапливаемой в магнитном поле катушки с индуктивностью L , в которой протекает ток iL , выражается формулой: WL = 1/2 (LiL 2 )

Энергия, накапливаемая в электрическом поле конденсатора емкостью С, заряженного до напряжения uC , равна: WC = 1/2 (CuC 2 )

Поскольку запас магнитной энергии WL определяется током в катушке iL , а электрической энергии WC — напряжением на конденсаторе uC , то во всех электрических цепях три любых коммутациях соблюдаются два основных положения: ток катушки и напряжение на конденсаторе не могут изменяться скачком . Иногда эти положения формулируются иначе, а именно: потокосцепление катушки и заряд конденсатора могут изменяться только плавно, без скачков .

Физически переходные режимы представляют собой процессы перехода энергетического состояния цепи от докоммутационного к послекоммутационному режиму. Каждому стационарному состоянию цепи, имеющей реактивные элементы, соответствует определенный запас энергии электрического и магнитного полей. Переход к новому стационарному режиму связан с нарастанием или убыванием энергии этих полей и сопровождается возникновением переходного процесса, который заканчивается, как только прекращается изменение запаса энергии. Если при при коммутации энергетическое состояние цепи не изменяется, то переходные процессы не возникают.

Переходные процессы наблюдаются при коммутациях, когда изменяется стационарный режим электрической цепи, имеющей элементы, способные запасать энергию. Переходные процессы возникают при следующих операциях:

а) включении и выключении цепи,

б) коротком замыкании отдельных ветвей или элементов цепи,

в) отключении или подключении ветвей или элементов цепи и т. д.

Кроме того, переходные процессы возникают при воздействии на электрические цепи импульсных сигналов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Читать так же:  Источники напряжения в электрических цепях
Оцените статью
Всё о бурение