Резонанс напряжений в цепи переменного тока это

Резонанс напряжений

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки XL и емкостного сопротивления конденсатора ХС.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:

Применив к этой цепи закон Ома, получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве I XL — действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а I ХС — действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:

где R — общее активное сопротивление цепи, XLС — ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Резонанс напряжений в цепи переменного тока

Индуктивное и емкостное сопротивления, соединенные последовательно, вызывают в цепи переменного тока меньший сдвиг фаз между током и напряжением, чем если бы они были включены в цепь по отдельности.

Иначе говоря, от одновременного действия этих двух различных по своему характеру реактивных сопротивлений в цепи происходит компенсация (взаимное уничтожение) сдвига фаз.

Полная компенсация, т. е. полное уничтожение сдвига фаз между током и напряжением в такой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда XL = ХС или, что то же, когда ω L = 1 / ωС.

Цепь в этом случае будет вести себя как чисто активное сопротивление, т. е. как будто в ней нет ни катушки, ни конденсатора. Величина этого сопротивления определится суммой активных сопротивлений катушки и соединительных проводов. При этом действующее значение тока в цепи будет наибольшим и определится формулой закона Ома I = U / R , где вместо Z теперь поставлено R.

Одновременно с этим действующие напряжения как на катушке UL = I XL так и на конденсаторе Uc = I ХС окажутся равными и будут максимально большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это интересное явление называется в электротехнике резонансом напряжений .

На рис. 1 приведены кривые напряжений, тока и мощности при резонансе напряжений в цепи.

График тока напряжений и мощности при резонансе напряжений

Следует твердо помнить, что сопротивления XL и ХС являются переменными, зависящими от частоты тока, и стоит хотя бы немного изменить частоту его, например, увеличить, как XL = ω L возрастет, а ХС = = 1 / ωС уменьшится, и тем самым в цепи сразу нарушится резонанс напряжений, при этом наряду с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если изменить величину индуктивности или емкости цепи.

При резонансе напряжений мощность источника тока будет затрачиваться только на преодоление активного сопротивления цепи, т. е. на нагрев проводников.

Действительно, в цепи с одной катушкой индуктивности происходит колебание энергии, т. е. периодический переход энергии из генератора в магнитное поле катушки. В цепи с конденсатором происходит то же самое, но за счет энергии электрического поля конденсатора. В цепи же с конденсатором и катушкой индуктивности при резонансе напряжений (XL = ХС) энергия, раз запасенная цепью, периодически переходит из катушки в конденсатор и обратно и на долю источника тока выпадает только расход энергии, необходимый для преодоления активного сопротивления цепи. Таким образом, обмен энергии происходит между конденсатором и катушкой почти без участия генератора.

Стоит только нарушить резонанс напряжений в цени, как энергия магнитного поля катушки станет не равной энергии электрического поля конденсатора, и в процессе обмена энергии между этими полями появится избыток энергии, который периодически будет то поступать из источника в цепь, то возвращаться ему обратно цепью.

Явление это очень сходно с тем, что происходит в часовом механизме. Маятник часов мог бы непрерывно колебаться и без помощи пружины (или груза в часах-ходиках), если бы не силы трения, тормозящие его движение.

Пружина же, сообщая маятнику в нужный момент часть своей энергии, помогает ему преодолеть силы трения, чем и достигается непрерывность колебаний.

Подобно этому и в электрической цепи, при явлении резонанса в ней, источник тока расходует свою энергию только на преодоление активного сопротивления цепи, тем самым поддерживая в ней колебательный процесс.

Итак, мы приходим к выводу, что цепь переменного тока, состоящая из генератора и последовательно соединенных катушки индуктивности и конденсатора, при определенных условиях XL = ХС превращается в колебательную систему . Такая цепь получила название колебательного контура.

Из равенства XL = ХС можно определить значения частоты генератора, при которой наступает явление резонанса напряжений:

Значение емкости и индуктивности цепи, при которых наступает резонанс напряжений :

Таким образом, изменяя любую из этих трех величин ( f рез, L и С), можно вызвать в цепи резонанс напряжений, т. е. превратить цепь в колебательный контур.

Пример полезного применения резонанса напряжений : входной контур приемника настраивается конденсатором переменной емкости (или вариометром) таким образом, что в нем возникает резонанс напряжений. Этим достигается необходимое для нормальной работы приемника большое повышение напряжения на катушке по сравнению с напряжением в цепи, созданным антенной.

Наряду с полезным использованием явления резонанса напряжений в электротехнике технике часто бывают случаи, когда резонанс напряжений вреден. Большое повышение напряжения на отдельных участках цепи (на катушке или на конденсаторе) по сравнению с напряжением генератора может привести к порче отдельных деталей и измерительных приборов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Вопрос 4. Резонанс напряжений и резонанс токов.

Подключим к RLC-контуру переменное синусоидальное напряжение

U = Um cosωt. В цепи переменного тока, с последовательно включенными L, C и R, полное сопротивление контура имеет минимальное значение Zmin = R, если ωL = 1/ωC. В этом случае падения напряжения на индуктивности и конденсаторе равны, а их фазы противоположны, т.е. (UL)рез опережает (UС)рез по фазе на π, так что (UС)рез + (UL)рез = 0. Ток в цепи принимает максимальные значения (возможные при данном Um), определяемые минимальным сопротивлением, что свидетельствует о наличии резонансной частоты ωрез для тока, значение которой определяется из условия ωL = 1/ωC, откуда

ωрез = 1/=ω0, (2.27)

т.е. резонансная частота для силы тока равна циклической частоте собственных колебаний в контуре. Напряжение UR на активном сопротивлении R в этом случае равно внешнему напряжению, приложенному к цепи (UR =U). При этом сила тока и внешнее напряжение совпадают по фазе.

Явление резкого возрастания амплитуды силы тока в контуре с последовательно включенными L, C, R и U при ωрез = 1/ = ω0 называется резонансом напряжений (последовательным резонансом).

Кривая зависимости амплитуды силы тока в контуре от частоты внешнего напряжения называется резонансной характеристикой контура (рис.2.7 а) или резонансной кривой колебательного контура.

Частота ωрез не зависит от активного сопротивления контура R. Δω = ω2ω1 – полуширина резонансной кривой. Частоты ω1 и ω2 соответствуют амплитуде силы тока в контуре, которая в раз меньше максимально возможной амплитуды тока.

а)

Поскольку в случае резонанса напряжений (UL)рез = (UС)рез, то подставив сюда значения резонансной частоты (2.27), амплитуды напряжений на катушке индуктивности и конденсаторе (2.25), (2.26), а также значение добротности контура (2. 16) получим

(UL)рез = (UС)рез = Im = (Um/R) =QUm, (2.28)

где Q – добротность контура. Добротность контура определяет остроту резонансных кривых. Так как Q обычных колебательных контуров больше единицы, то (UL)рез = (UС)рез > U, т.е. добротность показывает, во сколько раз напряжение на конденсаторе (или катушке) больше напряжения (э.д.с.), приложенного к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты, или выделения из многих сигналов одного колебания определенной частоты ν.

Можно показать, что относительная полуширина резонансной кривой связана с добротностью контура следующим соотношением

Δω/ωрез=R =1/Q. (2.29)

При резонансной частоте сдвиг фаз φ между током и напряжением обращается в нуль (φ=0), т.е. изменения тока и напряжения происходят синфазно колебаниям внешнего напряжения (внешней э.д.с.):

При ω → 0 резонансные кривые сходятся в одной точке с ординатой UCm = Um – напряжению, возникающему на конденсаторе при подключении его к источнику постоянного напряжения Um. Максимум при резонансе получается тем выше и острее, чем меньше β = R/2L, т.е. чем меньше активное сопротивление и больше индуктивность контура.

Резонанс токов. Рассмотрим цепь переменного электрического тока, содержащую параллельно включенные L и С, рис.2.8. Пусть активное сопротивление R = 0.

Если U = Umcos(ωt), то сила тока, текущего через емкость С, равна

Начальная фаза φ1 определяется условием tg φ1 = – ∞, т.е. φ1 = (2n+3/2)π, n = 1, 2, 3, . , а амплитуда тока (при условии L = 0 и R = 0) равна

Сила тока, текущего через индуктивность L,

а начальная фаза φ2 , определяемая из условия tg φ2 =+∞, равна φ2 = (2n+1/2)π, n=1, 2, 3, . Амплитуда тока (при R = 0 и С = ∞ – условие отсутствия емкости в цепи) равна

Cравнивая выражения (2.30) и (2.31) видим, что φ2 — φ1 = π, т.е. токи в параллельных ветвях электрической цепи противоположны по фазе. Амплитуда тока во внешней (неразветвленной) цепи согласно первому правилу Кирхгофа равна

Если ω = ωрез = 1/, тоIm1 = Im2 и Im = 0.

Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор С и катушку индуктивности L, при приближении частоты ω приложенного напряжения к резонансной частоте ωрез называется резонансом токов (параллельным резонансом).

Амплитуда тока Im = 0, так как считали, что активное сопротивление контура R = 0. При R ≠ 0 разность фаз φ2φ1 ≠ π, поэтому Im ≠ 0 и сила тока I в подводящих проводах примет наименьшее возможное значение, обусловленное только током через резистор. При резонансе токов силы токов I1 и I2 могут значительно превышать силу тока I во внешней цепи (рис. 2.9).

Амплитуда тока максимальна при рез=0. Чем больше коэффициент затухания β = R/2L, тем ниже максимум резонансной кривой.

Рассмотренный параллельный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной. Поэтому его свойства используются в резонансных усилителях, позволяющих выделить одно колебание определенной частоты из сигнала сложной формы.

Резонансныеусилители применяются для усиления сигналов, как на высоких, так и на низких частотах. Они используются в селективных вольтметрах, анализаторах спектра, синтезаторах частоты, измерителях нелинейных искажений и многих других радиоизмерительных и телекоммуникационных приборах. Кроме того, такие усилители являются одним из важнейших каскадов радиопередающих и радиоприёмных устройств.

В резонансных усилителях узкая полоса пропускания обеспечивается использованием в качестве нагрузки выходной цепи транзистора параллельного LC-контура, обладающего частотно-избирательными свойствами.

Резонансные усилители подразделяются на одноконтурные, двухконтурные, многоконтурные, усилители с пьезоэлектрическими и электромеханическими фильтрами, усилители с резонансными линиями и объёмными резонаторами. На рисунке 2.10 представлена схема двухконтурного резонансного усилителя а) и его амплитудно-частотная характеристика

б) (АХЧ). Вида АЧХ для этого усилителя близок к прямоугольному.

R1, R2, R3 – резисторы, C1, C2, C3, C4, C5 – конденсаторы, L1, L2 – катушки индукцивности,VT – транзистор, Uвх – входное напряжение, Uвых – выходное напряжение, E – электродвижущая сила источника, K – коэффициент усиления, f – частота, fн – нижняя частота, fв – верхняя частота, fр – резонансная частота,

П – ширина полосы частот усиления.

1. Что такое гармонические колебания? свободные колебания? вынужденные колебания?

2. Какие процессы происходят при свободных гармонических колебаниях в колебательном кон­туре? Чем определяется их период?

3. Запишите и проанализируйте дифференциальное уравнение свободных гармонических колеба­ний в контуре.

4. Запишите дифференциальное уравнение затухающих колебаний и его решение. Проанализи­руйте их для механических и электромагнитных колебаний.

5. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

6. Почему частота затухающих колебаний должна быть меньше частоты собственных колебаний системы?

7. Что такое коэффициент затухания? декремент затухания? логарифмический декремент за­тухания? В чем заключается физический смысл этих величин?

8. При каких условиях наблюдается апериодический разряд конденсатора?

9. Запишите дифференциальное уравнение вынужденных колебаний и решите его.

10. От чего зависит амплитуда вынужденных колебаний? Запишите выражение для амплитуды и фазы при резонансе.

11. Нарисуйте и проанализируйте резонансные кривые для амплитуды заряда и тока. В чем их отличие?

12.Почему добротность является важнейшей характеристикой резонансных свойств системы?

13. От чего зависит индуктивное сопротивление? емкостное сопротивление? Что называется ре­активным сопротивлением?

14. Как сдвинуты по фазе колебания переменного напряжения и переменного тока текущего через конденсатор? катушку индуктивности? резистор? Ответ обосновать также с помощью вектор­ных диаграмм.

Источник

Читать так же:  Проводимость электрической цепи с параллельным соединением
Оцените статью
Всё о бурение