Решение сложных цепей по законам кирхгофа

6.1.3. Расчет сложных цепей при помощи уравнений Кирхгофа

Задача 2. Рассчитать схему рис. 1.30, составив систему уравнений на основании законов Кирхгофа.

Анализ и решение задачи 2

1. Определение необходимого числа уравнений.

В схеме рис. 1.30 пять ветвей и для расчета токов в них надо составить пять уравнений. По первому закону Кирхгофа составляются уравнения для всех узлов, кроме одного (уравнение для него будет следствием предыдущих), по второму – для независимых контуров (в каждый последующий контур входит хотя бы одна ветвь, не вошедшая в ранее рассмотренные). Для данной схемы надо составить два уравнения по первому закону и три – по второму.

2. Составление и решение системы уравнений.

Для составления уравнений задаемся произвольно направлениями токов в ветвях и направлениями обхода контуров (рис. 1.30).

Подставив в уравнения численные значения величин, получим алгебраическую систему уравнений:

Решение системы дает значения токов: I1 = 1,093 А; I2 = 0,911 А; I3 = –0,506 А; I4 = 0,587 А; I5 = 0,405 А.

Дополнительные вопросы к задаче 2

1. Что означает минус перед численным значением тока I3?

Знак «–» говорит о том, что реальное направление тока в данной ветви противоположно принятому в начале расчета.

2. В каких режимах работают элементы схемы, содержащие источники ЭДС?

В ветвях с E1 и E2 токи совпадают по направлению с ЭДС, т.е. данные элементы работают источниками, отдавая энергию в схему; в ветви с ЭДС E3 ток направлен против ЭДС, т.е. данный элемент работает потребителем (например, машина постоянного тока в режиме двигателя).

3. Как проверить правильность решения задачи?

Для проверки правильности расчета можно на основании законов Кирхгофа написать уравнения для узлов и контуров схемы, которые не использовались при составлении исходной системы. Независимой проверкой является уравнение баланса мощностей: сумма мощностей источников равна сумме мощностей, расходуемых в резистивных элементах схемы. Т.к. элемент схемы с ЭДС может работать как в режиме источника, так и в режиме потребителя, соответствующее слагаемое в левой части уравнения берется с плюсом, если Е и I совпадают по направлению (источник), и с минусом, если направления противоположны (потребитель).

Мощности элементов схемы с ЭДС:

Мощности, расходуемые в резистивных элементах схемы:

I1 2 R1 + I2 2 R2 + I3 2 r03 + I4 2 R4+ I5 2 R5 = 1,093 2 * 20 + 0,911 2 * 50 + 0,506 2 * 5 + 0,587 2 * 65 + 0,405 2 * 85 = 103,01 Вт

EI = P Баланс мощностей сошелся, следовательно задача решена верно.

Источник

Законы Кирхгофа

Решение задач на расчет сложных цепей основывается на применении первого и второго законов Кирхгофа, которые наряду с законом Ома являются основными законами электрической цепи.

Законы Кирхгофа определяют распределение токов и напряжений в электрических цепях любой конфигурации.

Первый закон Кирхгофа

Рассматривая разветвленные электрические цепи, состоящие из нескольких контуров, нам необходимо установить соотношения между токами, приходящими к любому узлу, и токами, уходящими от него. Из физической сущности электрического тока следует, что общее количество носителей тока, притекающее к узлу в течении некоторого промежутка времени, равно количеству носителей, утекающему от узла за тоже время. Если предположить, что это положение не выполняется, то в узловой точке должно происходить накопление зарядов или убыль — утечка зарядов.

На практике эти явления не наблюдаются, следовательно, мы можем утверждать, что сумма величин токов, притекающих к точке разветвления, равна сумме величин токов, утекающих от нее.

Это положение и является формулировкой первого закона Кирхгофа.

Математическое выражение первого закона Кирхгофа применительно к узлу А:

Условимся токи, притекающие к точке разветвления, считать положительными, а токи, утекающие от нее, — отрицательными и сформулируем окончательно первый закон Кирхгофа:

Алгебраическая сумма величин токов в точке разветвления равна нулю.

Пример

На рисунке изображена узловая точка и указаны направления и величины в пяти ветвях.

Требуется определить величину и направление тока в шестой ветви.

Решение.

Предположим, что ток в шестой ветви притекает к точке А. Используя первый закон Кирхгофа, составим уравнение ∑I=0

Второй закон Кирхгофа

Применение законов Кирхгофа для расчета сложных цепей

Используя первый закон Кирхгофа, можно составить (k-1) уравнений, связывающих между собой величины токов в ветвях. Таким образом, число уравнений на одно меньше, чем число всех узлов цепи. Это объясняется тем, что все токи, входящие в уравнение для узла k, уже вошли в предыдущие уравнения. На схеме в узле А сходятся токи I1, I2, I3; в узле В —I2, I3, I4, I5; в узле С — I4, I5, I1.

Уравнения первого закона Кирхгофа для узлов А и В являются независимыми. В то же время уравнение для узла С. Дает нам зависимость, которая может быть получена на основании уравнений, составленных для первых двух узлов.
В самом деле, на основании первого закона Кирхгофа получим:

Но последнее уравнение не является независимым, так как может быть получено на основании двух первых.
Действительно, складывая (1) и (2), получим

а умножив обе части равенства на -1, будем иметь

Определим теперь число уравнений, которое можно составить, используя второй закон Кирхгофа. Для того чтобы эти уравнения были независимы друг от друга, достаточно чтобы контуры, для которых они пишутся, отличались хотя бы одной ветвью, входящей в их состав.
Математически доказано, что число независимых уравнений m, которое можно составить для любой сложной цепи по второму закону Кирхгофа будет равно

где m —число независимых уравнений, составленных по второму закону Кирхгофа;
n — число ветвей;
к — число узлов.
При выборе контуров стараются по возможности подобрать такие, которые содержат меньшее число ветвей и э. д. с.
Общее число уравнений, составляемых по первому и второму законам Кирхгофа для сложной цепи, состоящей из ветвей и узлов, будет равно числу ветвей.
Складывая число уравнений, составленных на основании первого закона Кирхгофа (k—1), с числом уравнений, составленных на основании второго закона Кирхгофа (m), получим

k — 1 + m = k— 1 + n — k + 1 = n .

Итак, если задана цепь из n ветвей и известны все э. д. с. и сопротивления, всегда можно составить n уравнений по числу неизвестных токов в ветвях.
Для решения задачи на расчет сложной цепи необходимо:

4. Для выбранных узловых точек схемы составить (k — 1) уравнений по первому закону Кирхгофа:

Суммирование токов производится обязательно с учетом знака.
5. Для выбранных замкнутых контуров составить m уравнений по второму закону Кирхгофа:

При составлении этих уравнений э. д. с. суммируются с учетом знака, а падения напряжения берутся со знаком плюс, если направление тока совпадает с направлением обхода контура, и наоборот.
6. Решить систему полученных уравнений, в результате чего определяются величины токов во всех ветвях цепи. Если при решении та или иная величина тока получается со знаком минус, то это значит, что фактическое направление тока в данной ветви обратно тому, которое было принято предварительно.
Для закрепления рассматриваемого порядка расчета сложной цепи с использованием законов Кирхгофа решим пример.

I

Пример. Дана сложная цепь, изображенная на рисунке. Зная Е1, Е2, Е3, r1 r2 и r3, необходимо определить токи в ветвях I1, I2 и I3.

Решение.
1. Анализируя данную схему, устанавливаем, что в ней число ветвей n равно трем, а число узлов k равно двум.
2. Обозначим направление токов в ветвях. Это не значит, что они будут именно такими, как мы предположили. Истинное направление токов определится в ходе решения задачи.
3. Уравнения первого закона Кирхгофа необходимо составить для
(k-1) узлов, или 2-1= 1.
Количество уравнений второго закона Кирхгофа, которое надо составить для решения задачи будет равно

m = n-(k- 1) = 3 — (2 — 1) = 3 — 1=2 .

4. Составим одно уравнение по первому закону Кирхгофа для узла А:

5. Приняв направление обхода контуров против часовой стрелки, составим m-2 уравнений для замкнутых контуров по второму закону Кирхгофа:
— для контура № 1:

6. Решаем систему из трех уравнений.
Из уравнения, составленного по первому закону Кирхгофа (4),
имеем
I1=I2-I3

Подставим полученное значение тока в уравнение (5)

Подставим числовые значения и уравнения (5) и (6).

Упростим эти уравнения и решим их методом подстановки:

Умножим уравнение (7) на 2 и вычтем из полученного результата уравнение (8)

далее, подставляя значение I2 в уравнение (8), получим

5= -3*2,7-4I3; 4I3= -13,1 ;
I3= -13,1/4=-3,3A .

Теперь из уравнения (6) находим ток I1:

В результате решения токи I2 и I1 имеют положительное, а ток I3
отрицательное значение, следовательно, фактическое направление токов I2
и I1 совпадает с принятым, а тока I3 — обратно принятому в начале решения задачи.

Источник

Читать так же:  Метки цепей грм змз 406 инжектор
Оцените статью
Всё о бурение