Расчет токов цепи обобщенным законом ома

Обобщенный закон Ома

Рассмотрим закон Ома для участка цепи, содержащего активные и пассивные элементы. Пусть на неразветвленном участке 1-3 сложной цепи (рис. 1.15), содержащей источник и потребитель энергии, протекает ток I.

Для определения потенциала любой точки электрической цепи необходимо произвольно задать потенциал какой-нибудь одной точки. Пусть для рассматриваемой схемы . Потенциал точки 2 больше потенциала точки 1 на значение ЭДС:. ТокI в любом пассивном элементе цепи направлен от точки с более высоким потенциалом до точки с более низким потенциалом. Поэтому потенциал точки 3 меньше потенциала точки 2, т.е. .

Объединив эти две формулы, получаем:

(1.21)

Отсюда ток (1.22)

Рассуждая аналогичным образом, можно получить выражение обобщенного закона Ома для случая противодействующего источника ЭДС: (1.23)

Объединив эти две формулы в одну, получим:

, (1.24)

где верхний знак соответствует ветви с содействующим источником ЭДС, а нижний – с противодействующим. Выведенная формула представляет собой закон Ома для участка цепи с ЭДС или обобщенный закон Ома.

Если в результате расчета по формуле (1.22) ток получает отрицательное значение, это означает, что действительное направление тока противоположно выбранному направлению.

Обобщенный закон Ома можно вывести для ветви, содержащей источник тока (рис. 1.17).

Для содействующего (рис. 1.17, а) источника тока

Для противодействующего (рис. 1.17, б) источника тока

Объединенная форма обобщенного закона Ома для ветвей, содержащих источник тока:

(1.25)

где верхний знак соответствуют схеме, на которой UJ и J сонаправлены.

Баланс мощности

Прохождение электрического тока по проводнику сопровождается выделением тепла. Согласно закону Джоуля-Ленца, вся электрическая энергия, сообщаемая проводнику в результате работы сил электрического поля, превращается в тепловую энергию. С помощью закона Ома можно записать для потребителя с сопротивлением R:

(1.26)

Обычно под законом Джоуля-Ленца понимают уравнение, определяющее не энергию, а мощность тепловых потерь

(1.27)

В приведенных выражениях тепловая энергия и мощность выражаются в Джоулях [Дж] и Ваттах [Вт] соответственно.

Сформулированный закон распространяется на ветви, содержащие как пассивные, так и активные элементы. С этой целью пользуются обобщенным законом Ома (1.24)

(1.29)

Выражения (1.29), записанные для ветви с источником напряжения, справедливы и для ветви с источником тока, если произвести подстановку вместоивместо.

Отсюда следует закон сохранения энергии, согласно которому алгебраическая сумма мощностей, подводимых ко всем ветвям разветвленной электрической цепи, равна нулю:

(1.30)

Существует еще одна форма записи баланса мощности:

. (1.31)

В левой части суммируются мощности источников энергии, а в правой – мощности, преобразованные в потребителях в тепло. Мощности источников, отдающих энергию, берутся со знаком «+», а работающих в режиме потребителей – со знаком «–» (рис. 1.18.).

Иногда пользуются уравнением баланса мощности в арифметической форме

. (1.32)

Здесь мощности противодействующих источников считаются положительными, но при балансе учитываются как мощности потребителей.

Источник

Обобщенный закон Ома.

Закон Ома выражаемый формулой, определяет зависимость между током и напряжением на пассивном участке электрической цепи.

Определим зависимость между током, напряжением и э.д.с. на активном участке (рис. 16).

На положительное напряжение на участке a – b Uab=a -b

(18)

Формула (18) выражает обобщенный закон Ома, или закон Ома для участка, содержащего э.д.с.

Из формулы видно, что если ток, напряжение и э.д.с. совпадают по направлению, то в выражение закона Ома они входят с одинаковыми знаками. Если э.д.с. действует в сторону, противоположную положительному направлению тока, то в выражении ставится знак «-».

Закон Ома применяется для участка ветви и для одноконтурной замкнутой схемы.

Пример № 1 построения потенциальной диаграммы:

Построить потенциальную диаграмму для одноконтурной схемы:

Решение: 1. перерисуем заданный контур, вынося внутренние сопротивления э.д.с. (r1— r4) за их пределы; обозначим точки контура.

2. Выберем положительное направление тока I, определим его значение используя обобщенный закон Ома:

3. За базисную точку примем точку a. Найдем потенциалы остальных точек:

4. В системе координат строим потенциальную диаграмму:

Законы Кирхгофа.

Распределение токов по ветвям электрической цепи подчиняется первому закону Кирхгофа, а распределение напряжений по участкам цепи подчиняется второму закону Кирхгофа.

Законы Кирхгофа наряду с законом Ома являются основными в теории электрических цепей.

Алгебраическая сумма токов в узле равна нулю:

Где i — число ветвей, сходящихся в данном узле.

Т.е., суммирование распространяется на токи в ветвях, которые сходятся в рассматриваемом узле.

Рис.17. Иллюстрация к первому закону Кирхгофа.

Число уравнений, составляемых по первому закону Кирхгофа, определяется формулой:

Где Nу – число узлов в рассматриваемой цепи.

Знаки токов в уравнении берутся с учетом выбранного положительного направления. Знаки у токов одинаковы, если токи одинаково ориентированы относительно данного узла.

Например, для узла, представленного на рис.17: припишем токам, подтекающим к узлу знаки «+», а к токам, оттекающим от узла – знаки «-».

Тогда уравнение по первому закону Кирхгофа запишется так:

Уравнения, составленные по первому закону Кирхгофа, называются узловыми.

Этот закон выражает тот факт, что в узле электрический заряд не накапливается и не расходуется. Сумма электрических зарядов, приходящих к узлу, равна сумме зарядов, уходящих от узла за один и тот же промежуток времени.

Алгебраическая сумма э.д.с. в любом замкнутом контуре цепи равна алгебраической сумме падений напряжения на элементах этого контура:

Где i – номер элемента(сопротивления или источника напряжения) в рассматриваемом контуре.

**Число уравнений, составляемых по второму закону Кирхгофа, определяется формулой:

Где Nb – число ветвей электрической цепи;

Nэ.д.с. — число идеальных источников э.д.с.

Рис.18. Иллюстрация ко второму закону Кирхгофа.

Для того, чтобы правильно записать второй закон Кирхгофа для заданного контура, следует выполнять следующие правила:

произвольно выбрать направление обхода контура, например, по часовой стрелке (рис.18).

э.д.с. и падения напряжения, которые совпадают по направлению с выбранным направлением обхода, записываются в выражении со знаком «+»; если э.д.с. и падения напряжения не совпадают с направлением обхода контура, то перед ними ставится знак «-».

Например, для контура рис.18, второй закон Кирхгофа запишется следующим образом:

Уравнение (20) можно переписать в виде:

Где (U – E) – напряжение на ветви.

Следовательно, второй закон Кирхгофа можно сформулировать следующим образом:

Алгебраическая сумма напряжений на ветвях в любом замкнутом контуре равна нулю.

Потенциальная диаграмма, рассмотренная ранее, служит графической интерпретацией второго закона Кирхгофа.

В схеме рис.1 заданы токи I1 и I3, сопротивления и э.д.с. Определить токи I4, I5, I6 ; напряжение между точками a и b, если I1 = 10мA, I3 = -20 мA, R4 = 5kОм, E5 = 20B, R5 = 3kОм, E6 = 40B, R6 = 2kОм.

Для заданного контура составим два уравнения по первому закону Кирхгофа и одно – по второму. Направление обхода контура указано стрелкой.

В результате решения получаем: I6 = 0; I4 = 10мA; I5 = -10мA

зададим направление напряжения между точками a и b от точки «a» к точке «b» — Uab. Это напряжение найдем из уравнения по второму закону Кирхгофа:

Для схемы рис.2 составить уравнения по законам Кирхгофа и определить неизвестные точки.

Число узловых уравнений – 3, число контурных уравнений – 1.

Запомнить! При составлении уравнения по второму закону Кирхгофа выбираем контур, в который не входят источники тока. Направление контура указано на рисунке.

В данной цепи известны токи ветвей I1 и I2. Неизвестные токи I3, I4, I5, I6.

Решая систему, получаем: I3 = 13,75 мA; I4 = -3,75мA; I5 = 6,25мA; I6 = 16,25мA.

Источник

Читать так же:  Все формулы для эдс в цепи
Оцените статью
Всё о бурение