Расчет сложных цепей методом узлового наложения

Метод узловых (потенциалов) напряжений

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Читать так же:  Как сделать отмосток фундамента

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник

4.Методы расчета сложных электрических цепей. Метод наложения (последовательность, особенностт и примеры расчета)

Метод наложения справедлив для линейных электрических цепей, основан на принципе независимости действия источников. Он состоит в определении и последующем суммировании, т.е. наложении частичных токов ветвей от действия каждого источника в отдельности (или группы источников). При определении частичных токов i-го источника все остальные идеальные источники ЭДС закорачиваются, а ветви с идеальными источниками тока разрываются.

Метод наложения целесообразно применять в том случае, если цепь содержит мало источников и если и если их удаление приводит к упрощению схемы. Действительное направление токов определяется направлением действия источника, а направление результирующего тока определяется знаком алгебраической суммы составляющих.

5. Метод расчета сложных электрических цепей. Метод контурных токов (последовательность, особенности и примеры расчета).

Составляем количество уравнений, равное количеству уравнений составленных по второму закону Кирхгофа, выбираем взаимонезависимые контуры, не содержащие источники тока, но их влияние учитывается!! Ток находится обязательно по всем элементам входящим в этот контур. УКАЗЫВАЕМ направление обхода контура. Истинное значение токов в ветви = алгебраической сумме контурных токов проходящих в данной ветви.

IIII(R1+R2+R7)– IIIR2– IIR1= J2R2

6. Методы расчета сложных электрических цепей. Метод узловых потенциалов (последовательность, особенности и пример расчета)

-Записывают уравнения для токов в ветвях схемы по обобщенному закону Ома (при этом один из потенциалов принимают =0).

-Записывают для всех узлов, кроме одного, уравнения по 1 закону Кирхгофа.

-В уравнения 1-ого закона Кирхгофа подставляют токи из уравнений обобщенного закона Ома, раскрывают скобки и проводят подобие относительно потенциалов узлов.

φ4·(1/R7+1/(R4+R3)+1/R2) – φ2·(1/(R4+R3))–φ1·(1/R7) =J2,

7. Методы расчета сложных электрических цепей. Метод двух узлов (последовательность, особенности и пример расчета).

Метод двух узлов — метод расчета электрических цепей, в котором за искомое (с его помощью определяют затем и токи ветвей) принимают напряжение между двумя узлами схемы.

Часто встречаются схемы, содержащие всего два узла. Наиболее рациональным методом расчета токов в них является метод двух узлов.

8.Методы расчета сложных электрических цепей. Метод эквивалентного генератора(последовательность, особенности и пример расчета).

этот метод используется, если требуется рассчитать ток в одном сопротивлении в одной из ветвей, не рассчитывая в других ветвях. Размыкаем ветвь, убираем все сопротивления осуществляем режим холостого хода. Источники ЭДС не имеющие внутреннее сопротивление закорачиваются, если имеют оставляются их внутренние сопротивления. Ветви с источниками тока размыкаются сопротивления идеального источника=∞. Определяем эквивалентное сопротивление и Uxx.

Uxx=-I5·R56 I8·R86 +E8

Источник

Оцените статью
Всё о бурение