Расчет электрических цепей произвольной конфигурации с использованием законов кирхгофа

1.5. Методы расчета линейных электрических цепей Расчет цепей с использованием законов Кирхгофа

Законы Кирхгофа используют для нахождения токов в ветвях схемы. Обозначим число всех ветвей схемы через b, число ветвей, содержащих источники тока, через bИT, число узлов — у. В каждой ветви схемы течет свой ток. Так как токи в ветвях с источниками тока известны, то число неизвестных токов равняется (bbИT). Перед тем как составлять уравнения, необходимо произвольно выбрать: а) положительные направления токов в ветвях и обозначить их на схеме; б) положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа.

Чтобы получить линейно независимые уравнения, по первому закону Кирхгофа составляют число уравнений, равное числу узлов без единицы, т.е. у — 1. По второму закону Кирхгофа составляют число уравнений n , равное

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляются уравнения, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону Кирхгофа, т.е. число уравнений по второму закону Кирхгофа равно числу независимых контуров.

Решение. Произвольно выбираем положительные направления тока в ветвях. В схеме рис. 1.13 b=3; bИТ=0; y=2.

Следовательно, по первому закону Кирхгофа можно составить только одно уравнение y-1=1:

.

По второму закону Кирхгофа составим два уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

.

Знак плюс перед I1R1 взят потому, что направление тока совпадает с направлением обхода контура, а знак минус перед I2R2 потому, что направление I2 встречно обходу контура.

.

Совместное решение трех уравнений дает

В рассматриваемом примере отрицательными оказались токи I2 и I3, это следует понимать так, что в действительности токи I2 и I3 направлены в обратную сторону.

Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Таким образом, метод контурных токов можно определить как метод расчета, в котором в качестве неизвестных принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, составляемых для схемы по второму закону Кирхгофа. Преимуществом этого метода, по сравнению с методом на основе законов Кирхгофа, является меньшая вычислительная работа, так как в нем меньше уравнений.

Вывод основных расчетных уравнений проведем применительно к схеме рис. 1.14, содержащей два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток I11 , а в правой (также по часовой) — контурный ток I22. Для каждого из контуров составим уравнения по второму закону Кирхгофа. При этом учтем, что в смежной ветви (с сопротивлением Rs) течет сверху вниз ток I11I22. Направления обхода контуров примем также по часовой стрелке.

. (1.24)

. (1.25)

В уравнении (1.24) множитель при токе I11, являющийся суммой сопротивлений первого контура, обозначим через R11, множитель при токе I22 (сопротивление смежной ветви, взятое со знаком минус), – через R12.

В уравнении (1.25) множитель при токе I22, являющийся суммой сопротивлений второго контура, обозначим через R22, множитель при токе I11 (сопротивление смежной ветви, взятое со знаком минус), – через R21.

Перепишем эти уравнения следующим образом:

где R11 и R22 — полное или собственное сопротивление первого и второго контуров соответственно; E11 и Е22 — контурные ЭДС первого и второго контуров, равные алгебраической сумме ЭДС этих контуров; R12 = R21 -сопротивление смежной ветви между первым и вторым контуром, взятое со знаком минус, так как контурные токи по ветви протекают встречно.

Если в схеме больше контуров, например три, то система уравнений в общем виде выглядит следующим образом:

(1.26)

В результате решения системы уравнений (1.26) какой-либо один или несколько контурных токов могут оказаться отрицательными.

В ветвях, не являющихся смежными между соседними контурами, найденный контурный ток является истинным током ветви. В смежных ветвях через контурные токи определяются токи ветвей.

Если в электрической цепи имеется n независимых контуров, то число уравнений тоже равно n.

Общее решение системы n-уравнений относительно тока Ikk таково:

, (1.27)

где  — определитель системы.

.

Алгебраическое дополнение ∆km, получено из определителя ∆ путем вычеркивания k-го столбца и m-й строки и умножения полученного определителя на (-1) k + m .

Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Если для схемы рис. 1.15 принять, что контурный ток I11 = J течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток I22 = I3 замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током I22:

.

Отсюда и ток второй ветвиI2=I11I22=JI22 .

Источник

1.7.2 Метод законов Кирхгофа

Рассмотрим расчет сложной цепи методом законов Кирхгофа.

Рисунок 1.31 — Расчетная схема

2. Проверить полученные результаты на баланс токов и баланс мощности.

3. Напряжения на всех элементах цепи.

4. Проверить напряжения на баланс напряжений.

Как и ранее, токи размечаются стрелками непосредственно на проводах схемы. Стрелки токов направляются в произвольном направлении. Неизвестных токов будет столько, сколько имеется ветвей в сложной цепи. Индекс тока принимается равным индексу ветви.

2. Размечаем стрелки напряжений на элементах цепи. Стрелки расставляем не произвольно, а всегда против ранее размеченных стрелок токов. Произвольно стрелки напряжений размечать нельзя.

Составляем уравнения электрического состояния цепи.

Для решения нашей задачи требуется система из трех уравнений. По первому закону Кирхгофа число уравнений будет

. (1.56)

По второму закону Кирхгофа число уравнений будет

. (1.57)

; ;

; но , поэтому

; .

. (1.58)

При решении уравнений можно использовать вычислительную технику или производить данную операцию вручную. В данном случае применим метод определителей (метод Крамера).

; ;

; .

; ;. (1.60)

Проверяем полученный результат на баланс токов.

Проверка производится во всех независимых узлах сложной цепи по первому закону Кирхгофа.

.

Проверяем полученный результат на баланс мощности.

По закону сохранения энергии количество выработанной в цепи и потребленной энергии должны быть равны.

, если .

.

При правильном значении токов имеем:.

Непосредственное применение законов Кирхгофа к расчету сложной цепи приводит к весьма громоздким вычислениям, так как приходится решать систему с большим числом уравнений. Поэтому, этот метод на практике применяется крайне редко из за его неэкономичности.

1.7.3 Метод контурных токов

Метод контурных токов был предложен известным английским физиком и электротехником Джеймсом К. Максвеллом. По этому методу цепь разбивается на ряд контуров, соприкасающихся друг с другом. Число контуров подсчитывается по формуле (1.14).

Предполагается, на время расчета, что каждый контур обтекается только присущим ему током, который называется контурным током.

Контурный ток — нереальный ток, он является вспомогательным средством при решении цепей.

Контурных токов столько, сколько имеется в цепи независимых контуров. Контуров в цепи всегда меньше числа ветвей, так как, даже для простого контура требуется, по крайней мере, две ветви.

Указанное обстоятельство приводит к тому, что контурных токов в цепи всегда меньше числа реальных токов.

Таким образом, основное преимущество метода контурных токов перед методом законов Кирхгофа состоит в сокращении числа расчетных уравнений.

По известным контурным токам, действительные токи определяются простым алгебраическим сложением.

Рассмотрим порядок расчета цепи указанным методом.

Источник

Читать так же:  Слетает цепь при прокрутке назад
Оцените статью
Всё о бурение