Привести примеры линейных элементов электрических цепей

Основные элементы линейных электрических цепей.

Резистор – это двухполюсник, напряжение и ток которого связаны уравнением , где Rсопротивление резистора, оно измеряется в омах (Ом). Резистор необратимо преобразует электромагнитную энергию в другие виды, в частности, в тепло. Мощность, потребляемая резистором, может быть вычислена по формулам:

.

Иногда вместо сопротивления резистора в расчетах удобно рассматривать его проводимость – величину, обратную сопротивлению: . Единица измерения проводимости — сименс (См), или 1/Ом; См = 1/Ом.

Катушка индуктивности – это двухполюсник, мгновенные значения напряжения и тока которого связаны уравнением , где Lиндуктивность катушки. Единица измерения индуктивности — генри (Гн), Гн = Ом×с.

Катушка индуктивности запасает энергию электромагнитного поля в виде энергии магнитного поля и отдает ее обратно в цепь.

Ток в катушке невозможно изменить скачком. Быстрое изменение тока приводит к появлению импульсов высокого напряжения, искр и электрической дуги, которые могут быть опасны. Это нужно учитывать при переключениях в цепях, содержащих большие индуктивности.

Как правило, катушка индуктивности состоит из медного провода, намотанного на каркас, внутри которого для усиления магнитного поля и увеличения индуктивности обычно помещается стальной или ферритовый сердечник.

Конденсатор – это двухполюсник, мгновенные значения напряжения и тока которого связаны уравнением , где Семкость конденсатора. Единица измерения емкости — фарада (Ф), Ф = с/Ом. Конденсатор запасает энергию электромагнитного поля в виде энергии электрического поля и отдает ее обратно в цепь.

Конденсатор не проводит постоянный ток. Напряжение на конденсаторе невозможно изменить скачком. После отключения источников питания на конденсаторах долгое время может сохраняться опасное напряжение.

Конденсатор чаще всего представляет собой две тонкие металлические полоски, разделенные тонким слоем диэлектрика.

Идеальный источник напряжения – это двухполюсник, напряжение которого не зависит от других элементов цепи: , где еэлектродвижущая сила (э.д.с.) источника.

Э.д.с. — это работа сил источника по перемещению эл. заряда от одного полюса источника к другому, деленная на величину этого заряда. Э.д.с. измеряется в вольтах. Направление вычисления э.д.с. указывает стрелка внутри кружка. Стрелку напряжения удобно направлять противоположно стрелке э.д.с.

У источников постоянного напряжения стрелка э.д.с. направлена от «минуса» к «плюсу».

Напряжение на зажимах идеального источника равно его э.д.с., т.к. работа, которую совершает заряд, перемещаясь по цепи под действием электрического поля, равна работе, которую затрачивает на перемещение этого же заряда в противоположном направлении источник напряжения.

Источники электрической энергии обычно работают в режимах, близких к идеальному источнику напряжения.

Внутреннее сопротивление идеального источника напряжения равно нулю. Это означает, что ток проходит по нему беспрепятственно, как по проводу. Это очевидно, если рассмотреть источник с нулевой э.д.с.

Рис. 4.1. Рис. 4.2.

Реальный источник напряжения часто представляют в виде соединения идеального источника напряжения и внутреннего сопротивления R 0 (рис. 4.1). Напряжение и ток реального источника напряжения связаны уравнением . ВАХ реального источника напряжения показана на рис. 4.2.

Идеальный источник тока – это двухполюсник, ток которого не зависит от других элементов цепи: .
Рис. 4.3. Рис. 4.4.

Внутреннее сопротивление идеального источника тока равно бесконечности. Это означает, что другие источники не могут пропускать свой ток через источник тока — так же, как через разрыв в цепи. Это очевидно, если рассмотреть источник с нулевым током.

Реальный источник тока часто представляют в виде параллельного соединения идеального источника тока и проводимости G 0 (Рис. 4.3). Напряжение и ток реального источника напряжения связаны уравнением . ВАХ реального источника напряжения показана на рис. 4.4.

Гидравлическая аналогия уподобляет резистор пористому телу, через которое просачивается жидкость. Конденсатор подобен широкому отрезку трубы, разделенному поперечной резиновой перегородкой. Катушка индуктивности подобна турбине, вращающейся без трения на холостом ходу. Источник напряжения подобен центробежному насосу, создающему заданное давление независимо от потока. Источник тока подобен поршневому насосу, создающему заданный поток независимо от давления.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Линейные и нелинейные элементы электрической цепи

Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.

Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей закон Ома строго выполняется.

Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока — Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками — q(U).

Яркий пример линейного элемента — проволочный резистор. Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.

Характеристика проводника (вольтамперная характеристика) — зависимость между напряжением, подводимым к проводнику, и силой тока в нем (обычно выраженная в виде графика).

Для металлического проводника, например, сила тока в нем пропорциональна приложенному напряжению, и поэтому характеристика представляет собой прямую линию. Чем круче идет прямая, тем меньше сопротивление проводника. Однако некоторые проводники, в которых ток не пропорционален приложенному напряжению (например, газоразрядные лампы), имеют более сложную, не прямолинейную вольтамперную характеристику.

Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется нелинейной электрической цепью.

Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.

В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.

Пример нелинейного элемента — лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.

Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, — ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.

Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения — к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.

Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.

На рисунке выше показана ВАХ типичного диода. Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.

На этом рисунке показано семейство типичных ВАХ фотодиода в разных условиях освещенности. Основной режимом работы фотодиода — режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод — это управляемый нелинейный двухполюсник.

Это ВАХ тиристора, здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте — рабочий участок тиристора. В третьем квадранте начало ВАХ — малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало — тиристор в данный момент открыт.

Момент перехода из закрытого — в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния — в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор — это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Читать так же:  Электромагнит в цепи постоянного тока
Оцените статью
Всё о бурение