При резонансе напряжений в электрических цепях

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Источник

Резонанс в электрической цепи

Разберемся сначала с важными понятиями.

Колебания внешнего воздействия могут усиливать даже незначительные колебания системы. Наибольший резонанс достигается при совпадении частоты колебаний внешнего воздействия с колебаниями системы.

Одним из примеров явления резонанса, есть расшатывание моста ротой солдат. Это происходит, когда частота шагов солдат, которая являются внешним воздействием, совпадает с частотой колебаний моста. Если возникнет такой резонанс, это может разрушить мост. Именно поэтому солдаты не переходят мосты стройным шагом, а идут в вольном режиме.

Часто встречаемым явлением в физике есть электрический резонанс. Без него невозможно было бы провести телетрансляцию, многие медицинские обследования и прочие важные процессы.

Востребованными резонансами в электрической цепи есть:

  • резонанс напряжений;
  • резонанс токов.

Резонанс в электрической цепи

Схема \(RLC\) – это электрическая цепь с последовательными, параллельными или комбинированными соединениями компонентов (резисторами, индукционными катушками и конденсаторами). \(RLC\) – это сочетание сопротивления, индуктивности и емкости.

Векторная диаграмма в случае последовательного соединения \(RLC\) -цепи бывает емкостной, активной или индуктивной.

В индуктивной векторной диаграмме резонанс напряжений появляется лишь при нулевом сдвиге фаз и совпадении сопротивлений индукции и емкости.

Сложно разобраться самому?

Попробуйте обратиться за помощью к преподавателям

Резонанс токов через реактивные элементы

Резонанс токов возникает при параллельном соединении реактивных сопротивлений с одинаковыми характеристиками в цепях с переменным током. Во время резонанса токов реактивная индуктивная проводимость приравнивается к реактивной емкостной проводимости, то есть \(BL=BC.\)

Колебания контура с определенной частотой совпадают с частотой колебаний источника.

Простейшим примером цепи, в которой может произойти резонанс токов, есть параллельное соединение катушки с конденсатором.

Поскольку реактивные сопротивления совпадают по модулю, то амплитуды токов конденсатора и катушки также будут совпадать и могут достичь наибольшего значения амплитуды. Согласно первому закону Кирхгофа \(IR\) равняется току источника. Иначе говоря, ток проходит лишь через резистор. Если рассмотреть параллельный контур \(LC,\) то при частоте резонанса его сопротивление будет огромным. В условиях режима гармонии при частоте резонанса в контуре будет расход тока лишь для восполнения потерь на активном сопротивлении.

Значит, в последовательной цепи \(RLC\) импеданс наименьший при частоте резонанса и равняется активному сопротивлению контура, при этом в параллельной цепи \(RLC\) импеданс наибольший при частоте резонанса и равняется сопротивлению утечки, что фактически есть активным сопротивлением контура. Это значит, что для обеспечения резонанса силы тока или напряжения в цепи необходима ее проверка с целью определения суммарного сопротивления и проводимости. Кроме того, ее мнимая часть должна равняться нулю.

Резонанс напряжений

Резонанс напряжений имеет место в цепи переменного тока в случае последовательного соединения активного \(R\) , емкостного \(C\) и индуктивного \(L\) компонентов. Резонанс напряжений состоит в совпадении внутренних колебаний источника и внешних колебаний контура. Резонанс напряжений применяется с пользой, но бывает и опасен. Например, данное явление применяют в радиотехнике, а опасность его состоит в том, что при резких скачках напряжения может произойти поломка оборудования и даже его возгорание.

Резонанс напряжения достигают несколькими путями:

  • подбирая индуктивность катушки;
  • подбирая емкость конденсатора;
  • подбирая угловую частоту \(ω_0\) .

Эти величины подбирают с помощью таких формул:

Частота \(ω_0\) – это резонансная величина. При постоянных напряжении и активном сопротивлении в цепи сила тока в процессе резонанса напряжения наибольшая и равняется отношению напряжения к активному сопротивлению. То есть, сила тока полностью не зависима от реактивного сопротивления. Если реактивные сопротивления индукции и емкости одинаковы и по своей величине превышают активное сопротивление, тогда на зажимах катушки и конденсатора будет напряжение, сильно превышающее напряжение на зажимах контура.

Попробуйте обратиться за помощью к преподавателям

Источник

Особенности цепи при резонансе напряжений:

1. Электрическая цепь обладает резистивным (активным) характером: ток совпадает с напряжением (ток и напряжение синфазны), сдвиг фаз в цепи φ = 0 , Z = R и схема замещения содержит только один резистивный элемент:

2. Коэффициент мощности сos φ = 1 – вся поступающая в цепь электрическая энергия преобразуется в работу, как полезную, так и различного рода потери.

3. Полное сопротивление цепи минимально: и равно активному сопротивлению цепи: X L – X C = 0  Z = R = min .

4. Ток в цепи максимален: I = U / Z = U / R = max и при малой величине активного сопротивления может достигать очень больших и опасных для цепи значений.

Цепь потребляет от сети максимальную и только активную мощность, равную полной мощности: P = I 2 R = I U сos φ = IU = S = max.

6. Цепь не потребляет от сети реактивную мощность Q = I U sin φ = 0 — обмена реактивной энергией между источником электрической энергии и цепью не происходит. Однако в самой цепи существует реактивная мощность и между реактивными элементами (катушкой и конденсатором) происходит обмен реактивной энергией. При этом индуктивная и ёмкостная составляющие реактивной мощности в цепи могут быть очень большими, поскольку при резонансе напряжений происходит их взаимная компенсация.

7. При резонансе напряжений (Х L = Х C) или при условиях близких к резонансу (Х L ≈ Х C) возможно возникновение явления перенапряжений на реактивных элементах, когда напряжение на катушке и конденсаторе может превысить приложенное к цепи напряжение.

13. Расчет параллельной цепи переменного тока. Последовательная эквивалентная схема замещения. Резонанс токов. Особенности цепи.

При расчете разветвлённой электрической цепи обычно известны приложенное напряжение и сопротивления элементов цепи, а в результате расчёта необходимо определить токи в ветвях и в неразветвлённой части цепи, параметры эквивалентной последовательной схемы замещения и построить векторную диаграмму.

Разветвлённая цепь переменного тока в общем случае может содержать несколько различных по характеру ветвей с различной комбинацией последовательно включенных реальных и идеализированных элементов. В отличие от расчета последовательной цепи в расчете параллельной цепи обычно используется метод проводимостей.

Любой элемент (участок) электрической цепи характеризуется параметрами –

комплексным сопротивлением [Ом] или обратной величиной – комплексной проводимостью Y [См]:

.

Комплексная проводимость , как и всякая комплексная величина, может быть представлена в алгебраическом виде: ,

Здесь Y = [ ] = 1/ Z — модуль комплексной проводимости — полная проводимость,

G — действительная составляющая комплексной проводимости — активная проводимость, B — мнимая составляющая комплексной проводимости — реактивная проводимость, - угол сдвига фаз в рассматриваемом элементе.

В зависимости от того, каким характером обладает рассматриваемый элемент (индуктивным или ёмкостным) различают два вида реактивной проводимости: B L индуктивная проводимость, B Сёмкостная проводимость.

Для вычисления активной и реактивных проводимостей обычно пользуются формулами, которые легко получить через известные (заданные) сопротивления элемента цепи R, X L или X C и Z , выразив коэффициент мощности cos фи из треугольника сопротивлений ( cos  = R / Z ): G = Y cos  = (1/ Z ) cos  = R / Z 2 [Ом], B L = Y sin  = (1/ Z ) sin  = X L / Z 2 [Ом], B C = Y sin  = (1/ Z ) sin  = X C / Z 2 [Ом]. Указанные соотношения могут быть представлены на плоскости в виде прямоугольного треугольника проводимостей:

МЕТОДИКА РАСЧЕТА ПАРАЛЛЕЛЬНОЙ ЦЕПИ

Источник

Читать так же:  Пила точить цепь бензопилы
Оцените статью
Всё о бурение