Преимущества трехфазных электрических цепей

24. Трехфазная электрическая цепь, ее преимущества перед однофазной, область использования.

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол.

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

— экономичность передачи электроэнергии на большие расстояния;

— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

— уравновешенность симметричных трехфазных систем.

25. Получение трехфазной системы эдс. Соединение звездой в трех проводной линии электропередачи.

Трехфазные электрические цепи – вырабатывается с помощью трехфазных генераторов. Работа генераторов основана законе электромагнитной индукции.

Состоит генератор из двух частей:

Статор – полый цилиндр (сердечник), в пазы, которые уложены 3 обмотки (фазы) (углубления в сердечнике). Обмотки уложены под углом в 120°. Начала и конца фаз маркируются буквами.

2 фаза: B-Y

При вращении ротера, его магнитные поле пересекает обмотки статора и по закону электромагнитной индукции, в них находится ЭДС. Так как обмотки сдвинуты на 120°, то наводимые ЭДС тоже сдвинуты на 120°

Если подключить 3 приемника к каждой фазе, получим 3 не связанных между собой электрические цепи, но они будут однофазными.

По сравнению с однофазной цепью, трехфазная имеет два преимущества:

Меньше расходует Металла на линию электропередач (20%)

Трехфазная цепь позволяет получать вращающиеся магнитный поля

Звезда – такое соединение, где концы фаз генератора или приемника сведены в одну точку, а начало фаз генератора и приемника соеденены линейными проводами.

26. Понятие о смещение нейтрали, четырех проводная линия электропередачи.

При неравномерной нагрузке в трехпроводной цепи происходит смещение нейтрали вправо, тогда фазное напряжение не одинаковое, что приведет к аварийным ситуациям.

Таким образом, трехпроводная цепь работоспособна только при равномерной нагрузки.

Для работы с неравномерной нагрузкой используется четырехпроводная схема соединения звездой.

27. Соединение треугольником. Расчет мощности в цепях трехфазного тока.

Треугольник – такое соединение, когда конец первой с началом второй, конец второй с началом третьей, конец третьей с началом первой.

Данная схема всегда трёхпроводная и некритична к неравномерным нагрузкам.

P=UлIлcosy;

Несмотря на то, что формулы одинаковы для звезды и для треугольника, однако, при переключении приемника с треугольника на звезду, или наоборот, потребляемые мощности будут разными.

Со звезды к треугольнику: Мощность, потребляемая приемником, увеличивается в три раза.

Активную мощность измеряется вольтметром, существует 3 схемы включения вольтметра

Источник

ЛЕКЦИЯ 11 ТРЕХФАЗНЫЕ ЦЕПИ

1. Достоинства трехфазных цепей

2. Трехфазный генератор 3. Классификация и способы включения в трехфазную цепь приемни-

Наличие вращающегося магнитного поля, на основе которого построен асинхронный двигатель.

При передаче энергии на расстояние в трехфазных цепях по сравнению с однофазными достигается существенная экономия материала проводов.

Возможность иметь два эксплуатационных напряжения.

Трехфазные цепи – это частный случай многофазных систем. Многофазной системой называют совокупность электрических цепей,

в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся одна от другой по фазе и индуктируемые в одном источнике питания.

Каждую из цепей, входящих в многофазную систему, называют фазой . Трехфазная цепь состоит из трех основных элементов: генератора, ли-

1. Принцип действия и разметка зажимов фаз обмотки.

Простейший трехфазный генератор состоит из неподвижной (статор) и подвижной (ротор) частей. Статор – это полый цилиндр, набранный из листов электротехнической стали. На его внутренней поверхности фрезеруют пазы, в которые укладывают три одинаковые обмотки, повернутые относительно друг друга на 120 ° . Ротор является электромагнитом. Его необходимо принудительно вращать.

При пересечении магнитными силовыми линиями поля ротора обмоток статора в последних наводятся ЭДС одинаковой величины с фазовым сдвигом 120 ° . Такую систему называют симметричной .

Условное изображение фаз обмоток генератора и их разметка представлены на рис. 11.1 .

Буквами А, В, С обозначают начала фаз обмоток; X, Y, Z – их концы.

Теоретические основы электротехники. Конспект лекций

Источник

Понятие о трехфазных цепях и их преимущества

Трехфазной называется электрическая цепь, в ветвях которой действуют три одинаковые по амплитуде синусоидальные ЭДС, имеющие одну и ту же частоту, сдвинутые по фазе одна относительно другой на угол 2π/3 (120°).

Рис. 3.1. Положительные направления (а) и графики (б) ЭДС синхронного генератора

В качестве источника электрической энергии в трехфазных цепях используются синхронные генераторы (см. § 11.1). В трех обмотках статора (якоря) синхронного генератора, называемых его фазами (рис. 3.1, а), и индуктируются указанные три ЭДС.

При указанных на рис. 3.1, аположительных направлениях ЭДС (от концов х, у и z фаз к их началама, b и с) ЭДС изменяются в соответствии с выражениями

Совместив вектор ЭДС Еа с осью действительных величин комплексной плоскости (рис. 3.2,а), получим следующие выражения ЭДС в комплексной форме:

Рис. 3.2. Векторные диаграммы ЭДС генератора в комплексной плоскости

Следует заметить, что при изображении векторных диаграмм вектор ЭДС Еа принято направлять вертикально вверх, что соответствует повороту комплексной плоскости на 90° против вращения часовой стрелки. При этом оси действительных и мнимых величин обычно не указывают (рис. 3.2, б).

Пользуясь положительными направлениями и зная законы изменения ЭДС или соответствующие им графики, можно определить мгновенные значения и действительные направления ЭДС в любой момент времени. Например, при t = 0 еa = 0,

Рис. 3.3. Схема соединения фаз генератора звездой

Рис. 3.4. Схема соединения фаз генератора треугольником

Трехфазный приемник можно рассматривать в простейшем случае как устройство, состоящее из трех двухполюсников с одинаковыми параметрами, рассчитанное на подключение к трем проводам трехфазной сети, между которыми имеются три напряжения, сдвинутые относительно друг друга по фазе на угол 2π/3. Отдельные двухполюсники трехфазного приемника называются его фазами. К трехфазным приемникам относятся, например, большинство электродвигателей переменного тока, крупные электрические печи, некоторые электромагниты.

Однофазный приемник можно рассматривать как двухполюсник, рассчитанный на подключение к двум проводам сети, между которыми имеется, естественно, лишь одно напряжение. К однофазным приемникам относятся осветительные лампы, электрические нагревательные приборы, двигатели переменного тока небольшой мощности, многие электромагниты и др.

Трехфазные электрические цепи имеют ряд преимуществ по сравнению с однофазными: возможность получения вращающегося магнитного поля и использования наиболее простых, надежных и дешевых асинхронных электродвигателей; меньший расход проводниковых материалов на сооружение линий электропередачи и электрических сетей; лучшие экономические показатели трехфазных генераторов и трансформаторов; возможность подключения к трехфазному источнику или трехфазной сети приемников, рассчитанных на два различных по значению напряжения. Благодаря своим преимуществам трехфазные цепи получили исключительно широкое распространение. Электрическая энергия вырабатывается на электростанциях, распределяется с помощью линий электропередачи и электрических сетей между приемниками и потребляется последними главным образом в виде энергии трехфазного переменного тока.

Трехфазные напряжения и токи. Представление трехфазной системы ЭДС в аналитической символической (комплексной), векторной формах. Преимущества трехфазных систем.

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

фаза как аргумент синусоидально изменяющейся величины;

фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

— экономичность передачи электроэнергии на большие расстояния;

— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

— уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Источник

Читать так же:  Миграция экотоксикантов по пищевым цепям
Оцените статью
Всё о бурение