Потребленной электрической энергии в цепи

Энергия и мощность электрического тока

В любой замкнутой электрической цепи источник затрачивает электрическую энергию Wистна перемещение единицы положительного заряда по всей цепи: и на внутреннем и на внешнем участках.

и;

Энергия источника (полезная), которая расходуется на потребителе: W=UIt;

Энергия источника (потери), которая расходуется на внутреннем сопротивлении источника: W=U0It;

Преобразование электрической энергии в другие виды энергий происходит с определенной скоростью. Эта скорость определяет электрическую мощность элементов электрической цепи:

;

Мощность источника определяется соотношением:

Мощность потребителя определяется соотношением:

Коэффициент полезного действияэлектрической цепиηопределяется отношением мощности потребителя к мощности источника:

Закон Джоуля — Ленца

Ток, протекая по проводнику, нагревает его (в этом случае электрическая энергия преобразуется в тепловую). Количество выделенного тепла будет определяться количеством электрической энергии, затраченной в этом проводнике.

Дж.

(кал).

Коэффициент 0,24 (электротермический эквивалент) устанавливает зависимость между электрической и тепловой энергией.

Часть3: Режимы работы электрических цепей

В электрических цепях все основные элементы делятся на активные и пассивные. Активными считаются элементы, в которых преобразование энергии сопровождается возникновением ЭДС (аккумуляторы, генераторы). Элементы, в которых ЭДС не возникает, называются пассивными.

Параметры электрических цепей:

Ток в замкнутой цепи ;

Напряжение на клеммах источника ;

Падение напряжения на сопротивлении источника ;

Полезная мощность (мощность потребителя) .

Электрические цепи могут работать в трех режимах:

режим короткого замыкания R=0:

режим нагрузки R≠0:;;;.

Условие максимальной отдачи мощности: полезная мощность максимальна, когда сопротивление потребителя R станет равным внутреннему сопротивлению источника R0.

КПД при максимальной отдаче мощности равно 50%, к 100% КПД приближается в режиме, близком к холостому ходу.

Нормальным (рабочим) режимом называют такой режим работы цепи, при котором ток, напряжение и мощность не превышают номинальных значений, заданных заводом-изготовителем.

Источники тока могут работать в режиме генератора и в режиме нагрузки. Источники, ЭДС которых совпадают с направлением тока в цепи, работают в режиме генератора, а источники , ЭДС которых не совпадают с направлением тока, работают в режиме потребителя.

Напряжение источника, работающего в режиме генератора: .

Напряжение источника, работающего в режиме потребителя: .

Тема 1.3

Расчет электрических цепей постоянного тока

Основной целью расчета электрической цепи является нахождение ее параметров: ток, напряжение, сопротивление, мощность, КПД. Значения параметров дают возможность оценить условия и эффективность работы электротехнического оборудования и приборов во всех участках электрической цепи.

Для расчета электрических цепей основой служат законы Ома и Кирхгофа, Джоуля-Ленца.

К характерным элементам электрической цепи относятся ветвь, узел, контур.

Ветвью электрической цепи называется ее участок, на всем протяжении которого величина тока имеет одинаковое значение. Ветви, которые содержат источники питания называются активными, а которые не содержат их – пассивными.

Узлом электрической цепи называется точка соединения электрических ветвей.

Контуром электрической цепи называют замкнутое соединение, в которое могут входить несколько ветвей.

Сумма токов входящих в узел равна сумме токов, выходящих из узла. ИЛИ Сумма токов, сходящихся в узле равна нулю.

∑I=0; — математическое выражение первого закона Кирхгофа.

Алгебраическая сумма ЭДС в замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на всех участках этой цепи.

; — математическое выражение второго закона Кирхгофа.

Последовательное соединение потребителей

Последовательным соединением участков эй цепи называют соединение, при котором через все участки цепи проходит один и тот же ток.

Общее напряжение последовательно соединенных элементов равно сумме напряжений на каждом элементе согласно второму закону Кирхгофа: ;

В соответствии с законом Ома: ; Из этого соотношения следует:; Таким образом, общее сопротивление цепи с последовательно соединенными элементами равно сумме этих сопротивлений.

Параллельное сопротивление потребителей

Параллельным соединением участков электрической цепи называется соединение, при котором все участки цепи присоединяются к одной паре узлов, то есть находятся под действием одного и того же напряжения.

Общий ток такого соединения согласно первому закона Кирхгофа будет равен сумме токов в отдельных ветвях: ; В соответствии с законом Ома:; Если поделить левую и правую части наU, получим:;

Обратная величина общего эквивалентного сопротивления параллельно включенных потребителей равна сумме обратных величин этих потребителей.

Величина, обратная сопротивлению определяет проводимость потребителя g. Тогда для параллельно соединенных потребителей справедливо:;

Источник

1.2. Энергетические соотношения в простейшей цепи постоянного тока

Преобразование электрической энергии в тепловую. Электрическая мощность.При прохождении электрическогоIпо участку цепи с сопротивлениемrпроисходит преобразование электрической энергии в. тепловую.

Количество электрической энергии W, преобразуемой в тепловую энергию за времяt, определяется по закону Джоуля — Ленца:

Мощность Рпредставляет собой количество энергии, преобразуемой в единицу времени:

(1.7а)

(1.76)

Заменив в выражении (1.7а) произведение IrнапряжениемU, получим формулу для мощностиР, характеризующей интенсивность процесса преобразования электрической энергии в тепло или другие виды энергии:

Основными единицами измерений являются: для мощности — ватт (вт), а для электрической энергии—ватт-секунда (вт-сек) или джоуль (дж). На практике чаще применяют укрупненные единицы измерении:

Рассмотрим баланс мощностей в простейшей цепи (см. рис. 1.3). Для этого умножим все члены уравнения (1 .3а) на I.

Произведение EIпредставляет собой полную электрическую мощностьРэ, развиваемую источником. Часть этой мощностиРr=I 2 rтеряется в самом источнике в виде тепла. РазностьРэРгпредставляет собой мощность, отдаваемую источником во внешнюю цепь. В проводах линии также теряется в виде тепла часть мощностиРл = I 2 rлОстальная мощностьPнагр = I 2 rн = Uнагр Iпотребляется нагрузкой. Баланс мощностей рассмотренной цепи можно наглядно иллюстрировать энергетической диаграммой (рис. 1.5).

диаграмма простейшей цепи

Потери мощности в источниках питания современных электроэнергетических установок относительно невелики. Мощные электрические генераторы имеют высокий к.п.д., достигающий значения 0,95 и выше.

При передаче потребителям одной и той же мощности Рнагр = Uнагр Iток, протекающий по линии, будет тем меньше, чем выше напряжение установки. Потеря мощности в линии, как известно, пропорциональна квадрату тока. В связи с этим повышение напряжения, например в 10 раз, приводит к снижению потери мощности в линии передачи в 100 раз, и следовательно, к повышению ее экономичности. Этим объясняется использование все более высоких напряжений в электроэнергетических установках.

1.3. Расчет электрических цепей постоянного тока с одним источником питания

Соединения источников и потребителей электроэнергии. В рассмотренной ранее простейшей электрической цепи (см. рис. 1.3) генератор, электроприемник и связывающие их провода, по которым электрическая энергия передается от генератора к приемнику, соединены между собой последовательно. Этот способ соединения применяется для того, чтобы связать в общую электрическую систему разнохарактерные с энергетической точки зрения элементы цепи генераторы, электроприемники и линии передачи электрической энергии. Однородные в энергетическом отношении элементы системы, например генераторы или электроприемники, как правило, соединяются между собой параллельно. При таком способе соединения достигается относительная независимость в управлении и работе отдельных источников и потребителей электроэнергии. Между тем при последовательном соединении практически невозможно включать и отключать отдельно каждый генератор или электроприемник, а также устанавливать для любого из них требуемый режим, работы. Кроме того, при последовательном соединении приемников, например электрических ламп, перегорание одной из них влечет за собой погасание всех остальных.

Совместная параллельная работа генераторов на общую электрическую нагрузку имеет значительные преимущества в сравнении с раздельной работой каждого генератора на свою нагрузку. Во-первых, повышается надежность питания потребителей, так как в случае аварийного отключения одного из генераторов оставшиеся в работе генераторы могут обеспечить бесперебойное электроснабжение наиболее ответственных нагрузок. Во-вторых, при параллельной работе можно в случае снижения нагрузки (например, в ночное время или в выходные дни) отключать часть генераторов, что повышает экономичность эксплуатации энергетических установок.

В тех случаях, когда один источник (например, электрохимический аккумулятор с э.д.с. Е= 1,25—2,4В) не обеспечивает требуемого напряжения (110 или 220В), приходится применять последовательное соединение однотипных источников.

Рис. 1.6 Схема сложной цепи постоянного тока

Последовательное включение однотипных приемников (например, электрических ламп) применяется в исключительных случаях, когда напряжение источника значительно превышает номинальное напряжение отдельных электроприемников.

Законы Кирхгофа. При анализе и расчете электрических цепей, образуемых путем последовательного и параллельного соединения источников и потребителей электроэнергии, составляют электрическую схему, на которой показывают, как осуществляются эти соединения (рис 1.6).

Несколько последовательно соединенных элементов, по которым проходит один и тот же ток, образуют ветвь. В частном случае в ветви может быть лишь один элемент. Некоторые ветви (например,АВ,ANMF) содержат как сопротивленияr, так и э.д.с. Е. Другие ветви (например,AD,DC,BC) имеют только сопротивленияr.

Место соединения трех или более ветвей называют узловой точкой, или узлом. Так, например, в узловой точкеАсходятся три ветви:АВ,АDиANMF.

Ряд ветвей, образующих замкнутую электрическую цепь, называют контуром(например,ABDA,ADFMNA).

К узловым точкам схемы применим первый закон Кирхгофа, а к контурам — второй закон Кирхгофа.

Согласно первому закону Кирхгофа, сумма токов, притекающих к любой точке разветвления (узловой точке), равна сумме токов, уходящих от нее. Если токи, притекающие к точке разветвления, считать положительными, а уходящие от нее, — отрицательными, то первый закон Кирхгофа можно сформулировать так:алгебраическая сумма токов в узловой точке равна нулю:

В качестве примера напишем уравнение первого закона Кирхгофа для узловой точки А электрической схемы, представленной на рис. 1.6:

Рис. 1.7 Цепь с последовательным соединением сопротивлений

Согласно второму закону Кирхгофа,во всяком замкнутом контуре алгебраическая сумма э.д.с. равна алгебраической сумме падений напряжения на всех сопротивлениях, входящих в этот контур:

При обходе замкнутого контура по часовой стрелке (или против часовой стрелки) э.д.с. и токи, направления которых совпадают с принятым направлением обхода, следует считать положительными, а э.д.с. и токи, направленные встречно, — отрицательными.

Для примера рассмотрим замкнутый контур ADFMNA(рис. 1.6). При указанных на рисунке направлениях токов и э.д.с. и принятом обходе этого контура по часовой стрелке уравнение второго закона Кирхгофа принимает следующий вид:

В некоторых расчетах оказывается более удобным пользоваться уравнением второго закона Кирхгофа, записанным как

Здесь часть слагаемых Ir, относящаяся к определенным участкам контура, заменена напряжениямиUна этих участках.

Цепи с последовательным соединением. Если электрическая цепь состоит из нескольких последовательно соединенных участков с сопротивлениямиr1,r2,r3,r4(рис. 1.7), то через все участки протекает один и тот же токI.

При отсутствии на участках цепи собственных э.д.с. 4 общее напряжениеU, приложенное к зажимам всей цепи, равно сумме падений напряжения на отдельных элементах цепи (второй закон Кирхгофа):

Из этого выражения следует, что общее сопротивление rравно сумме сопротивлений всех последовательно соединенных элементов цепи, а напряжения между элементами распределяются прямо пропорционально их сопротивлениям.

Если уравнение (1.14) умножить на I, то получим

т. е. общая мощность Р, потребляемая цепью, равна сумме мощностей, потребляемых отдельными ее элементами.

Рис. 1.8 Разветвленная цепь постоянного тока

Цепи с параллельным соединением. При параллельном соединении электроприемников (рис. 1.8) все они находятся под одинаковым напряжениемU.

Общий ток Iв неразветвленной части цепи равен сумме токов, потребляемых отдельными электроприемниками:

(1.17)

Эквивалентная проводимость разветвленной цепи равна сумме проводимостей отдельных ее ветвей:

(1.19)

В частном случае, когда цепь содержит два параллельно включенных сопротивления r1иr2, эквивалентное сопротивлениеrэудобно определять по формуле, вытекающей из выражения (1.19):

(1.20)

Умножив уравнения (1.17) на U, получим

(1.21)

Из изложенного следует что мощность, расходуемая в разветвленной цепи, равна сумме мощностей, потребляемых отдельными приемниками или одним эквивалентнымприемником. Проводимость эквивалентного приемника равна сумме проводимостей всех параллельно включенных электроприемников. Токи в этих приемниках так же, как и мощности, распределяются всегда пропорционально проводимостям.

При включении нескольких генераторов для совместной параллельной работы (рис. 1.9) они соединяются между собой одноименными зажимами, а к общим узловым точкам присоединяется внешняя цепь (нагрузка).

Рис. 1.9 Параллельна работа источника питания

При этом э.д.с. всех генераторов будут иметь одинаковое направление относительно их общей нагрузки.

Расчет смешанной цепи с одной э.д.с. Основная задача расчета электрических цепей — определить токи и мощности в различных элементах цепи (генераторах, электроприемниках и линиях, соединяющих источники энергии с потребителями), а также напряжения на отдельных элементах исследуемой цепи.

Исходными данными для расчета обычно являются заданные э.д.с., действующие в этой цепи, и характеристики (параметры) различных элементов цепи, т. е. либо их сопротивления, либо номинальные напряжения и мощности. При условии постоянства (по величине и направлению) действующих в цепи э.д.с. и неизменности сопротивлений, образующих эту цепь, картина распределения напряжений, токов и мощностей в данной схеме может быть только одна, т. е. задача имеет однозначное решение.

Если электрическая цепь представляет собой сочетание последовательно и параллельно включенных сопротивлений (смешанная схема соединений) и при этом имеет один источник питания (одну э.д.с.), то она рассчитывается в следующем порядке: 1) путем последовательного упрощения схемы находят общее сопротивление цепи; 2) по закону Ома определяют общий ток; 3) находят распределение токов и напряжений в схеме. Методику расчета подобных цепей поясним на числовом примере.

Пример 1.1. Рассмотрим цепь, изображенную на рис 1.10. Исходные данные:

Найти распределение токов в схеме.

Решение. Определяем эквивалентное сопротивление между точкамиА В:

Рис. 1.10. Смешанная цепь постоянного тока

Складывая последовательно соединенные сопротивления rАВиr4, получаем сопротивление

Сопротивление r’ в свою очередь оказывается соединенным параллельно сопротивлениемr5:

Напряжение между точками СиD

Напряжение между точками АиВ

Во избежание встречающихся ошибочных представлений необходимо обратить внимание на следующее. В электрической цепи всегда устанавливается ток Iтакой величины, при которой приложенное к этой цепи напряжениеUполностью уравновешивает (компенсирует) потери напряжения во всех последовательно включенных элементах цепи. Изменение величины сопротивления любого участка электрической схемы неизбежно влечет за собой изменение как общего тока, так и токов, протекающих в отдельных элементах этой схемы

Так, например, изменение величины или отключение сопротивления r3в схеме рис. 1.10 вызывает изменение величин всех токов.

Метод контурных токов. При расчете сложных цепей с большим числом узловых точек предпочтителен метод контурных токов, который позволяет освободиться от составления уравнений по первому закону Кирхгофа и тем самым значительно сократить общее число совместно решаемых уравнений.

Сущность этого метода поясним на рис. 1.13, на котором представлена сложная цепь с узловыми точками А,В,С,D. Заданную схему разбиваем на три смежных контура /, //, /// с произвольно выбранными направлениями токов. Если считать, что в каждом из этих контуров протекает свой контурный ток (II, III, IIII), то в ветвях, являющихся общими для двух смежных контуров, протекающие токи равны алгебраической сумме двух контурных токов (в ветвиАВпротечет токI2=IIIII, в ветвиВС— токI5=IIIIIIи в ветвиDB— токI4=IIIIIII).

Применяя к отдельным контурам второй закон Кирхгофа, получим систему с числом уравнений, равным числу контурных токов 5 :

Эти уравнения можно представить в виде, более удобном для их совместного решения:

E1 + E2 = I1 (r1 + r2 + r3 + r4) – III r3 – IIII r4

Источник

Читать так же:  Цепь в раздатку шевроле тахо
Оцените статью
Всё о бурение