Переменный ток виды сопротивлений в цепи переменного тока

2.5. Сопротивления в цепи переменного тока

В цепях переменного тока выделяют следующие виды сопротивлений.

Активное. Активным называют сопротивление резистора. Условное обозначение

Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты.

Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Для емкостного сопротивления выше была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL — XC.

Полное сопротивление. Полным сопротивлением цепи называют величину

.

Из этого соотношения следует, что сопротивления Z, R и X образуют треугольник: Z – гипотенуза, R и X – катеты. Для удобства в этом треугольнике рассматривают угол φ, который определяют уравнением

и называют углом сдвига фаз. С учетом него можно дать дополнительные связи

2.6. Мощности в цепях переменного тока

По аналогии с мощностью в цепях постоянного тока P = U I, в цепях переменного тока рассматривают мгновенную мощность p = u i. Для упрощения рассмотрим мгновенную мощность в каждом из элементов R, L и С отдельно.

Элемент r (резистор)

Зададим напряжение и ток в виде соотношений

Известно, что для резистора ψu = ψi, тогда для р получим

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. В таких случаях принять рассматривать среднюю за период Т мощность

.

Если записать Um и Im через действующие значения U и I: ,, то получим

По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью. Единицей ее измерения является Ватт (Вт).

Элемент l (индуктивность)

Известно, что в индуктивности соотношение фаз ψu = ψi + 90°. Для мгновенной мощности имеет

.

Усредняя уравнение (2.35) по времени за период Т получим

.

Для количественной оценки мощности в индуктивности используют величину QL равную максимальному значению рL

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу UL = I XL получим

Элемент с (ёмкость)

Известно, что в емкости соотношение фаз ψu = ψi — 90°. Для мгновенной мощности получаем

Среднее значение за период здесь также равно нулю. По аналогии с уравнением (2.36) вводят величину QC = I 2 XC, которую называют реактивной (емкостной) мощностью. Единицей ее измерения также является ВАр.

Если в цепи присутствуют элементы R, L и С, то активная и реактивная мощности определяются уравнениями

Вводят понятие полной мощности цепи

.

С учетом уравнений (2.37) и (2.39), (2.40) можно записать в виде

Единицей измерения полной мощности является ВА – вольт-ампер.

Источник

Виды сопротивлений переменному току

Электрическая цепь переменного тока с резистивным сопротивлением

В таких приемниках вся электрическая энергия необратимо превращается в другой вид энергии (в резисторах — в тепловую). Идеальное активное сопротивление эквивалентно сопротивлению резистора (R) на постоянном токе. Напряжение и ток совпадают по фазе, т.е.= 0,cos= 1 (см рис. 14).

Рис. 14. Векторная диаграмма цепи с активным сопротивлением

Т.е. кривые изменения напряжения Urи токаIв один и тот же момент времениtдостигают максимального значения и одновременно проходят нулевые значения.

Электрическая цепь переменного тока с индуктивным элементом

Если из сверхпроводника (r= 0) намотать катушку и подключить ее к источнику синусоидального напряжения, то величина тока не будет равна бесконечности, как это следовало бы из закона Ома для постоянного тока или для идеального активного сопротивления, а будет ограничена определенным значением, т.е. в такой цепи появилось какое-то сопротивление. Причина этого – наводимая в катушке переменным магнитным полем ЭДС самоиндукции (eL) (рис. 15).

Рис. 15. Электрическая цепь с катушкой индуктивности

откуда

Так как гдеL– индуктивность, то при имеем

т.е. напряжение опережает ток на 90 электрических градусов, или ток отстаетот напряжения на 90 0 .

Произведение “L” имеет размерность сопротивления (Ом) и называется индуктивным сопротивлением:

Векторная диаграмма и закон Ома для идеального индуктивного сопротивления имеют вид (рис. 16):

Рис. 16. Векторная диаграмма для идеального индуктивного сопротивления

Реальные катушки индуктивности наматывают не из сверхпроводника, т.е. . Поэтому они обладают некоторым активным сопротивлением, которое тем больше, чем тоньше обмоточный провод и больше витков в катушке индуктивности.

Таким образом, реальную индуктивность можно представить как последовательное соединение идеальной индуктивности и внутреннего активного сопротивления реальной катушки (рис.17).

Рис.17. Векторная диаграмма реального индуктивного сопротивления

Напряжение реального индуктивного сопротивления ULвекторно складывается из двух векторов: вектора напряжения на идеальном реактивном элементеUри вектора напряжения на внутреннем активном сопротивленииUа.

Сдвиг фаз между током и напряжением зависит от параметров конкретной катушки (длины векторовUриUа).

Электрическая цепь переменного тока с емкостным элементом

Если к источнику синусоидального напряжения подключить конденсатор емкостью С (рис. 18),

Рис. 18. Электрическая цепь с конденсатором

то амперметр покажет, что по этой цепи проходит ток. Это объясняется процессами зарядки и разрядки конденсатора при постоянных изменениях направления тока, т.е. заряды циркулируют по обеим полуветвям от источника и обратно, конечно, не проходя сквозь сам конденсатор (это будет его пробой).

Величина тока определяется выражением:

Заряд на конденсаторе qзависит от его емкости и величины приложенного к нему напряжения:.

Отсюда для тока получаем

При имеем

т.е. в конденсаторе ток опережает напряжение на угол /2 (рис. 19). Произведение “С” имеет размерность Ом –1 = См – (симменс), отсюда

называют емкостным сопротивлением.

Для такого идеального сопротивления имеем:

Рис. 19. Векторная диаграмма идеального емкостного сопротивления

Реальные конденсаторы также имеют внутреннее активное сопротивление. Поэтому их можно представить как последовательное соединение идеального конденсатора и внутреннего активного сопротивления (рис.20):

Рис.20. Векторная диаграмма реального емкостного сопротивления

Напряжение на реальном конденсаторе Uсвекторно складывается из векторов реактивной (идеальной) и активной составляющих напряжения конденсатора.

Сдвиг фаз между током и напряжением меньше 90 о и зависит от внутренних параметров конденсатора.

Второй закон Кирхгофа для цепи с последовательным соединением r-,L-,C- элементов, при векторном изображении величин, будет выглядеть следующим образом (рис. 21):

Рис. 21. Последовательное соединение r-, L-, C- элементов.

Строим векторную диаграмму (рис. 22), проводя операцию сложения векторов. За базовый вектор возьмем ток, так как при последовательном соединении он единый для всей цепи. Получили треугольник напряжений, из которого, зная значения составляющих напряжений, можно найти

Рис. 22. Векторная диаграмма последовательного соединения r-, L-, C- элементов

Разделив стороны этого треугольника на ток, получим подобный треугольник, отражающий наличие и величины сопротивлений в данной цепи (рис. 23).

Рис. 23. Треугольник сопротивлений

Здесь Z=U/Iназывается полным сопротивлением и определяется выражением:

.

(X=XL -XC) – общее реактивное сопротивление.

Сдвиг по фазе между током и общим напряжением можно также найти из треугольника сопротивлений:

.

При положительном тангенсе ток отстает от напряжения, а при отрицательном опережает его.

С учетом изложенного закон Ома для последовательного соединения имеет вид (в общем случае):

.

Однотипные сопротивления складываются арифметически.

Мощность цепи синусоидального тока

Мощность в цепи переменного тока является ткакже переменной величиной и на любом заданном участке цепи в любой момент времени tопределяется как произведение мгновенных значений напряжения и тока.

Так для идеального активного сопротивления, принимая

,, имеем:

Следовательно, активная мощность имеет постоянную составляющую и переменную, изменяющуюся с двойной частотой.

Найдем среднюю мощность за период:

.

Эта мощность называется активнойи измеряется в ваттах (Вт). Она характеризует необратимые преобразования электрической энергии на данном участке цепи.

Для реактивных сопротивлений, учитывая, что в катушке индуктивности напряжение опережает ток на 90 0 , а в конденсаторе отстает от него на 90 0 , будем иметь:

Полученные выражения показывают, что реактивная мощность содержит только переменную составляющую, изменяющуюся с двойной частотой; ее среднее значение равно нулю. Но за четверть основного периода тока мощности положительные, что означает накопление магнитной энергии в катушке или заряд конденсатора, вторую четверть они отрицательны. Значит, энергия отдается обратно в сеть и необратимо ни во что не превращается (средняя за период мощность равна нулю). Поэтому такая мощность называется реактивной, имеет свое обозначение (Q) и размерность — ВАр (вольт-ампер реактивный):

Кроме активной и реактивной мощностей цепи переменного тока характеризуются полноймощностью (S). Единица измерения – ВА (вольт-ампер). Это максимально возможная мощность при заданныхUиI:

Соотношение между мощностями определяется из треугольника мощностей (рис. 24),

Рис. 24. Треугольник мощностей

который можно получить из треугольников напряжений или токов.

Для расчета мощностей в зависимости от схемы соединения применяют различные формулы, вытекающие из основной:

.

Из формулы выразимcos:

.

Отношение активной мощности Р к полной Sназываюткоэффициентом мощности.Он показывает, какую долю всей вырабатываемой источником мощности составляет активная мощность.

ПРОГРАММА РАБОТЫ И УКАЗАНИЯ К ЕЕ ВЫПОЛНЕНИЮ

Перед выполнением работы изучить схему установки, систему расположения источников питания с регулятором напряжения, измерительных приборов, элементов схемы, необходимых для работы. Собрать электрическую цепь согласно рис. 25.

Рис. 25. Схема электрическая принципиальная

Включить сетевое напряжение стенда и напряжение питания цепи. Вольтметром замерить напряжение U, подводимое к цепи, а также на отдельных элементахUr,Uk,Ucи записать в таблицу 4. Измерить напряжение на активных и реактивных элементах, если убрать один резистор; один конденсатор; одну катушку индуктивности (опыт 1).

Источник

Читать так же:  Расшифровка анализа качества воды
Оцените статью
Всё о бурение