Однофазный индукционный счетчик его конструкция схема включения в цепь

Принцип действия и устройство счётчиков электрической энергии

С помощью электросчетчиков осуществляется учет израсходованной электрической энергии. Электросчетчики бывают индукционные и электронные.

Измерительный механизм индукционного однофазного счетчика электрической энергии (электроизмерительный прибор индукционной системы) состоит из двух электромагнитов, расположенных под углом 90° друг к другу, в магнитном поле которых находится легкий алюминиевый диск. Схема устройства счетчика электрической энергии показана на рисунке 1.

Для включения счетчика в цепь его токовую обмотку соединяют с электроприемниками последовательно, а обмотку напряжения — параллельно. При прохождении по обмоткам индукционного счетчика переменного тока в сердечниках обмоток возникают переменные магнитные потоки, которые, пронизывая алюминиевый диск, индуцируют в нем вихревые токи.

Взаимодействие вихревых токов с магнитными потоками электромагнитов создает усилие, под действием которого диск вращается. Последний связан со счетным механизмом, учитывающим частоту вращения диска, т.е. расход электрической энергии.

Рис. 1. Схема устройства счетчика электрической энергии: 1 — обмотка тока, 2 — обмотка напряжения, 3 — червячный механизм, 4 — счетный механизм, 5 — алюминиевый диск, б — магнит для притормаживания диска.

Рис. 2. Устройство индукционного электросчетчика

Для учета потребленной электроэнергии в сетях переменного трехфазного тока применяются трехфазные индукционные электросчетчики , принцип действия которых аналогичен однофазным.

В настоящее время все более широкое применение получили электронные (цифровые) электросчетчики . Электронные счетчики обладают рядом преимуществ по сравнению с индукционными счетчиками:

— отсутствие вращающихся частей,

— возможность учета электроэнергии по нескольким тарифам,

— измерение суточных максимумов нагрузки,

— учет как активной, так и реактивной мощности,

— возможность дистанционного учета электроэнергии.

Рис. 3. Схема устройства электронного счетчика электроэнергии

В настоящее время учёт электроэнергии, в основном, производится по одному тарифу (то есть стоимость электроэнергии одинакова независимо от времени потребления). Однако, начинает вводится многотарифные системы оплаты, при которых стоимость электрической энергии различна по часам суток или по дням недели.

Указанный подход обеспечит более равномерное потребление электроэнергии потребителями и снижение максимальной нагрузки энергосистемы. Поэтому уже выпускаются электронные счётчики со встроенными часами, которые питаются от аккумуляторной батареи, что обеспечивает учёт электроэнергии по разным интервалам времени, задаваемым программно.

Как правило, электронные счётчики имеют жидкокристаллический индикатор, на котором отображаются потребляемая электроэнергия по каждому из тарифов, текущая потребляемая мощность, текущее время и дата и другие измеряемые прибором параметры.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Устройство и принцип работы однофазного индукционного счётчика

Счетчик представляет собой измерительную ваттметровую систему и является интегрирующим (суммирующим) электроизмерительным прибором. Принцип действия индукционных приборов основан на взаимодействии переменных магнитных потоков с токами, индуктированными ими в подвижной части прибора (в диске). Электромеханические силы взаимодействия вызывают движение подвижной части. Схематическое устройство однофазного счетчика представлено на рисунке 8.

Основными его узлами являются электромагниты 1 и 2, алюминиевый диск 3, укрепленный на оси 4, опоры оси — подпятник 5 и подшипник 6, постоянный магнит 7. С осью связан при помощи зубчатой передачи 8 счетный механизм (на рисунке не показан), 9 — противополюс электромагнита 1. Электромагнит 1 содержит Ш — образный магнитопровод, на среднем стержне которого расположена многовитковая обмотка из тонкого провода, включенная на напряжение сети U параллельно нагрузке Н. Эта обмотка в соответствии со схемой включения называется параллельной обмоткой или обмоткой напряжения. При номинальном напряжении 220 В параллельная обмотка имеет обычно 8-12 тысяч витков провода диаметром 0,1 — 0,15 мм. Электромагнит 2 расположен под магнитной системой цепи напряжения и содержит U — образный магнитопровод, с расположенной на нем обмоткой из толстого провода с малым количеством витков. Данная обмотка включена последовательно с нагрузкой и поэтому называется последовательной или токовой обмоткой. Через нее протекает полный ток нагрузки. Обычно количество ампервитков этой обмотки находится в пределах 70 — 150, т.е. при номинальном токе 5 А обмотка содержит от 14 до 30 витков. Комплекс деталей, состоящий из последовательной и параллельной обмоток с их магнитопроводами, называется вращающим элементом счетчика.

Рисунок 8 – Устройство однофазного индукционного счетчика

Ток, протекающий по обмотке напряжения, создает общий переменный магнитный поток цепи напряжения, небольшая часть которого (рабочий поток) пересекает алюминиевый диск, находящийся в зазоре между обоими электромагнитами. Большая часть магнитного потока цепи напряжения замыкается через шунты и боковые стержни магнитопровода (нерабочий поток), который разделяется на две части и необходим для создания требуемого угла сдвига фаз между магнитными потоками цепи напряжения и цепи нагрузки (токовой цепи). Магнитный поток цепи напряжения прямо пропорционален приложенному напряжению (напряжению сети).

Ток нагрузки, протекающий через токовую обмотку, создает переменный магнитный поток, который также пересекает алюминиевый диск и замыкается по магнитному шунту верхнего магнитопровода и частично через боковые стержни. Незначительная часть (нерабочий поток) замыкается через противополюс, на пересекая диск. Так как магнитопровод токовой обмотки имеет U-образную конструкцию, то его магнитный поток пересекает диск дважды.

Таким образом, всего через диск счетчика проходят три переменных магнитных потока. Согласно закону электромагнитной индукции, переменные магнитные потоки обеих обмоток при пересечении диска наводят в нем две ЭДС, под действием которых в диске вокруг следов этих потоков протекают соответствующие вихревые токи (правило “буравчика”). В результате взаимодействия магнитного потока обмотки напряжения и вихревого тока от магнитного потока токовой обмотки и с другой стороны магнитного потока токовой обмотки и вихревого тока от обмотки напряжения, возникает электромеханические силы, которые создают вращающий момент, действующий на диск. Этот момент пропорционален произведению указанных магнитных потоков и синусу угла сдвига фаз между ними.

Активная мощность потребляемая нагрузкой определяется как произведение силы тока на приложенное напряжение и на косинус угла между ними. Так как магнитные потоки обоих обмоток пропорциональны напряжению и току, то можно, добившись конструктивным путем равенства синуса угла между потоками и косинуса угла между вектором тока и напряжения, осуществить пропорциональность вращающего момента счетчика с коэффициентом измеряемой активной мощности. Синус одного угла равен косинусу другого угла, если между ними сдвиг 90° , что и достигают в конструкциях счетчиков (применение короткозамкнутых витков, дополнительных обмоток замкнутых на регулируемое сопротивление, перемещение винтового зажима и т.д.). Вращающий момент пропорциональный мощности сети приводит диск счетчика во вращение, частота вращения которого стабилизируется, когда вращающий момент уравновешивается тормозным моментом. Для создания тормозного момента в счетчике имеется постоянный магнит, который своими полюсами охватывает диск. Силовые линии магнитного поля, пересекая диск, наводят в нем дополнительную ЭДС, пропорциональную частоте вращения диска. Эта ЭДС в свою очередь вызывает протекание в диске вихревого тока, взаимодействие которого с потоком постоянного магнита приводит к возникновению электромеханической силы, направленной против движения диска, т.е. приводит к созданию тормозного момента. Регулировку тормозного момента, а следовательно частоты вращения диска производят путем перемещения постоянного магнита в радиальном направлении. При приближении магнита к центру диска, частота вращения уменьшается.

Таким образом, добившись постоянной частоты вращения диска счетчика, получаем, что измеряемое счетчиком количество энергии определяется как произведение числа оборотов диска счетчика на коэффициент пропорциональности С (постоянная счетчика).

Источник

Устройство однофазного индукционного счётчика

Однофазные индукционные счётчики потихоньку вытесняются более новыми электронными счётчиками с более высокими классами точности , меньшими габаритами , имеющие возможность считать по разным тарифам , отслеживание показаний дистанционно , отсутствие вращающегося диска, но тем самым индукционные счётчики пока занимают больше 65% которые в данный момент ведут учёт электроэнергии.

Давайте рассмотрим на каком принципе и из чего состоит этот счётчик. В схеме соединения счётчика его токовая обмотка подключена с потребителем последовательно, а обмотка напряжения — параллельно.

Ток протекая по обмоткам индукционного счетчика создаёт в сердечниках каждой из обмоток переменные магнитные поток, которые в итоге пронизывая алюминиевый диск, индуцируют в нем вихревые токи.

Схема однофазного индукционного счётчика

схема однофазного индукционного счётчика

  1. Обмотка напряжения
  2. Червячный механизм , счётный механизм
  3. Постоянный магнит
  4. Обмотка тока
  5. Алюминиевый диск

Подключение однофазного электросчетчика: Видео

Источник

Читать так же:  Полная цепь это какая
Оцените статью
Всё о бурение