Как работает конденсатор в цепи постоянного тока

Содержание
  1. Что такое конденсатор и для чего он нужен в схемах
  2. Общая концепция
  3. Принцип работы
  4. Конденсатор и цепь постоянного тока
  5. Цепь с переменным током
  6. Назначение и функции конденсаторов
  7. Примеры использования
  8. Фазовые искажения
  9. Конденсатор: что это такое и для чего он нужен
  10. Содержание статьи
  11. Принцип работы конденсаторов
  12. Устройство конденсаторов
  13. Пакетная конструкция
  14. Трубчатая конструкция
  15. Дисковая конструкция
  16. Литая секционированная конструкция
  17. Рулонная конструкция
  18. Где используются конденсаторы
  19. Поведение конденсатора в цепях постоянного и переменного тока
  20. Виды и классификация конденсаторов
  21. Электролитические конденсаторы
  22. Пленочные и металлопленочные конденсаторы
  23. Керамические конденсаторы
  24. Бумажные и металлобумажные конденсаторы
  25. Основные параметры конденсаторов
  26. Емкость
  27. Удельная емкость
  28. Плотность энергии
  29. Номинальное напряжение
  30. Полярность
  31. Паразитные параметры конденсаторов
  32. Обозначение конденсаторов на схеме
  33. Особенности соединения нескольких конденсаторов в цепи
  34. Последовательное
  35. Параллельное
  36. Маркировка конденсаторов
  37. Как проверить работоспособность конденсатора
  38. Проверка полярного конденсатора
  39. Проверка неполярного конденсатора
  40. Как зарядить и разрядить конденсатор

Что такое конденсатор и для чего он нужен в схемах

Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Читать так же:  Приковали ноги в цепи


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник

Конденсатор: что это такое и для чего он нужен

Конденсатор – это устройство, способное накапливать электрический заряд.

Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.

Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.

Содержание статьи

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Функции, выполняемые конденсаторами:

  • фильтрация высокочастотных помех;
  • сведение к минимуму пульсаций;
  • разделение сигнала на постоянные и переменные компоненты;
  • накопление энергии;
  • создание резонанса с катушкой индуктивности, что позволяет усилить сигнал.

Поведение конденсатора в цепях постоянного и переменного тока

В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.

При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.

Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.

Виды и классификация конденсаторов

Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.

Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.

Электролитические конденсаторы

В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.

Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.

В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.

У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.

Пленочные и металлопленочные конденсаторы

Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.

Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.

Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.

Основные различия между конденсаторами с разными типами пленок:

  • Конденсаторы с диэлектриком в виде полипропиленовой пленки применяются в цепях, в которых предъявляются высокие требования к температурной и частотной стабильности. Они подходят для систем питания, подавления ЭМП.
  • Конденсаторы с диэлектриком в виде полиэстеровой пленки обладают низкой стоимостью и способны выдерживать высокие температуры при пайке. Частотная стабильность, по сравнению с полипропиленовыми видами, ниже.
  • Конденсаторы с диэлектриком из поликарбонатной и полистиреновой пленки, которые использовались в старых схемах, сегодня уже неактуальны.

Керамические конденсаторы

В керамических конденсаторах в качестве диэлектрика используются керамические пластины.

Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.

Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.

Бумажные и металлобумажные конденсаторы

В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Паразитные параметры конденсаторов

Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.

К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:

  • Электрическое сопротивление изоляции (r), которое определяется по формуле: r = U/Iут, в которой U – напряжение источника питания, Iут – ток утечки.
  • Эквивалентное последовательное сопротивление (ЭПС, англ. ESR). Эта величина зависит от электрического сопротивления материала обкладок, выводов, контактов между ними, потерями в диэлектрическом слое. ЭПС возрастает с ростом частоты тока, подаваемого на накопитель. В большинстве случаев эта характеристика не принципиальна. Исключение составляют электролитические накопители, устанавливаемые в фильтрах импульсных блоков питания.
  • Эквивалентная последовательная индуктивность – L. На низких частотах этот параметр, обусловленный собственной индуктивностью обкладок и выводов, не учитывается.

К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.

Обозначение конденсаторов на схеме

На чертежах конденсатор с постоянной емкостью обозначают двумя параллельными черточками — обкладками. Их подписывают буквой «C». Рядом с буквой ставят порядковый номер элемента на схеме и значение емкости в пФ или мкФ.

В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.

Обозначение по ГОСТ 2.728-74 Описание
Конденсатор постоянной ёмкости
Поляризованный (полярный) конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

Особенности соединения нескольких конденсаторов в цепи

Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.

Последовательное

Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.

Получаемая емкость в такой цепи находится по формуле:

Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.

Параллельное

Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.

Напряжение на всех элементах будет одинаковым.

Маркировка конденсаторов

В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.

Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.

В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.

Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.

На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.

Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:

  • Материал диэлектрика. Б – бумага, С – слюда, К – керамика.
  • Степень защиты от внешних воздействий. Г – герметичное исполнение, О – опрессованный корпус.
  • Конструкция. М – монолит, Б – бочонок, Д – диск, С – секционный вариант.
  • Режим по току. И – импульсный, У – универсальный, Ч – только постоянный ток, П – переменный/постоянный.

Как проверить работоспособность конденсатора

Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.

Проверка полярного конденсатора

При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.

После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).

Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.

Проверка неполярного конденсатора

В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.

Как зарядить и разрядить конденсатор

Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.

Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.

Источник

Оцените статью
Всё о бурение