Формулы для цепи с индуктивным сопротивлением

Что такое индуктивное сопротивление

В электрических цепях существует три вида сопротивления. Это активное, которое действует как при постоянном, так и при переменном токе, а также два вида реактивного — индуктивное и емкостное сопротивление. Умея их определять, можно посчитать полное сопротивление, которое также называют импедансом. От чего зависит индуктивное сопротивление и по какой формуле рассчитывается, будет рассмотрено в статье.

Виды сопротивления в электрической цепи

Если используется постоянный ток, то рассматривается только обычное сопротивление, которое также называется активным или омическим. При переменном существует не только активное, но и реактивное сопротивление. Последнее бывает индуктивным и емкостным. Его величина определяется по соответствующим формулам. Сопротивление называется реактивным потому что не вызывает безвозвратных потерь энергии.

В цепях переменного тока полное сопротивление представляет собой сумму омического, индуктивного и емкостного сопротивлений. Определить его можно по правилам векторного сложения слагаемых. Если рассматривать цепь, которая не содержит конденсаторов, то основную роль будет играть реактивное сопротивление катушки индуктивности.

Что такое индуктивное сопротивление

Когда по цепи течёт ток, то движущиеся заряды создают магнитное поле. При постоянном токе оно не будет меняться во времени. Если же происходит уменьшение или увеличение тока, то возникает явление самоиндукции. Она тормозит изменение электротока, тем самым уменьшая его. При этом сопротивление выражается через индуктивность.

Читать так же:  Замок цепь для двери

Если имеется катушка, то индуктивное сопротивление в цепи создает она. Его значение зависит от частоты тока. Чем она больше, тем выше индуктивное сопротивление катушки.

Ещё одной особенностью является сдвиг фазы. Активное сопротивление не имеет смещения по отношению к питающему напряжению, емкостное запаздывает на 90 градусов, а индуктивное опережает напряжение на эту же величину.

Катушка индуктивности

Эта деталь обычно имеет сердечник цилиндрической или тороидальной формы, на который многократно намотан провод. Основной характеристикой катушки является индуктивность.

Как известно, магнитное поле создаётся движущимися электрическими зарядами. Даже если постоянный ток идёт по проводу, вокруг него создаётся магнитное поле. Оно создаёт препятствия для изменения тока в те моменты, когда меняется само, чему можно не удивляться, зная о существовании индуктивного сопротивления. Для постоянного тока это происходит в моменты включения и выключения.

Если питающее напряжение переменное, то изменения происходят непрерывно. Основная задача катушки индуктивности — увеличивать напряженность магнитного поля. Она имеет не только индуктивное, но и обычное сопротивление. Однако при расчётах его считают пренебрежимо малым.

Формула индуктивного сопротивления

Рассматриваемое сопротивление тем больше, чем выше частота тока и индуктивность. Эту зависимость легко объяснить. Большая частота подразумевает высокую скорость изменения магнитного поля, которая усиливает эффект самоиндукции. Увеличение индуктивности соответствует более сильному магнитному полю.

Индуктивное сопротивление обозначается как XL. Обозначение буквой Х используется для любого реактивного сопротивления. То, что оно индуктивное подтверждает буква L. Его единица измерения — Ом. Чтобы рассчитать значение, понадобится формула индуктивного сопротивления:

В этой формуле буквами F и L обозначаются частота переменного тока и индуктивность катушки соответственно. Индуктивность измеряется в Генри, сокращенно Гн.

Чтобы найти полное сопротивление в контуре, состоящем из резисторов и катушки, необходимо сложить активную и реактивную составляющую, воспользовавшись правилом прямоугольного треугольника. Один катет такого треугольника соответствует активному сопротивлению, а второй — реактивному. Гипотенуза — это полное сопротивление или импеданс. Его значение рассчитывается по теореме Пифагора.

  • XL — это индуктивное сопротивление, которое определяется формулой, приведённой выше.
  • R — активное сопротивление. Для его вычисления следует воспользоваться законом Ома.

Произведение 2πF в формуле сопротивления называют также круговой частотой. Ее обозначают буквой ω. С учетом этого формулу для определения индуктивного сопротивления можно записать так: XL = ω×L.

Практическое использование

Одним из распространённых применений индуктивного сопротивления катушки является создание фильтров. В сложных системах могут возникать шумы на высоких частотах, которые снижают качество передачи сигнала. Это может быть актуально, например, для акустических систем, зависящих от качества воспроизведения звуковых сигналов. В этом случае выручает то, что индуктивное сопротивление определяется частотой тока.

Электротоки разной частоты, проходящие через катушку, вызывают в ней разное индуктивное сопротивление. Оно тем больше, чем выше частота переменного тока. При нулевой частоте, то есть, установившемся постоянном ток, индуктивное сопротивление также равно нулю.

Сигналы пропускают через фильтр с индуктивным сопротивлением, препятствующим прохождению сигналов нежелательной частоты. Чтобы преградить путь низкочастотным звуковым сигналам, используют катушки со стальными сердечниками, высокочастотным — без сердечников. Такие катушки называются дросселями, соответственно, низкой и высокой частоты.

В рассматриваемой ситуации удобно одновременно использовать еще и ёмкостное сопротивление, зависящее также от частоты тока. Но оно с ее увеличением уменьшается. Таким образом, с помощью фильтров можно избавляться от нежелательных шумовых сигналов.

Ещё одно важное применение рассматриваемого явления — трансформатор. Та самая самоиндукция, которая тормозит прохождение тока, благодаря создаваемому сопротивлению в этом устройстве играет положительную роль.

В трансформаторе используется сердечник и две обмотки. На первичную обмотку поступает переменное напряжение питания, а на вторичной генерируется индукционный ток. Наличие индукционных токов определенной величины необходимо для работы многих электроприборов.

С помощью трансформатора можно, например, преобразовать 220 В сетевого питания в 12 В, которые необходимы для электропитания стереосистемы. Такая подстройка определяется соотношением количества витков на первичной и вторичной обмотках.

Катушка представляет собой источник ЭДС. Эту ее особенность используют в индукционных плитах. Электромагнитные волны, создаваемые катушкой, нагревают кухонную посуду и их содержимое. По такому же принципу работают и печи на сталелитейных заводах.

Зная, что собой представляет такое явление, как индуктивное сопротивление, его можно использовать для расчета параметров различного электротехнического и энергетического оборудования.

Видео по теме

Источник

Индуктивное сопротивление катушки индуктивности

Кроме широко известного активного сопротивления в цепи электрического тока могут присутствовать и другие, например, индуктивное сопротивление, а также емкостное.

Все три вида сопротивления названы сопротивлениями, поскольку оказывают противодействие электрическому току, но каждый делает это по-своему. В этой статье рассмотрим не только как появляется индуктивное сопротивление, но и что это такое и как оно используется.

Что такое индуктивное сопротивление

Само понятие индуктивного сопротивления встречается в полном сопротивлении переменной сети. Объясняется тем, что как такового индуктивного сопротивления в природе не существует. Есть индуктивность, которая никак не связана с резистивным сопротивлением. Вот в это нужно разобраться.

Индуктивность – это электрическая инертность, возникающая в замкнутой цепи при прохождении электрического тока. Для примера, чтобы машина, идущая на какой-то скорости, могла остановиться, ей нужно время и место для тормозов. Что-то подобное происходит с индуктивностью.

Почему тогда используют понятие индуктивное сопротивление? При изменении направления или величины тока, магнитное поле, окутывающее проводник, по которому течет ток, своим влиянием мешает производить указанные изменения.

Его действие сопоставимо действию резистивного сопротивления, то есть, в каких-то случаях они могут быть похожи.

В каких элементах возникает

Поскольку индуктивность – составляющая электрического тока, то она возникает в любых проводниках, по которым проходит переменный электрический ток. Особо выражено это в замкнутых контурах с сердечником из магнитопровода. Некоторая паразитная индуктивность присутствует в печатных платах и даже в микросхемах.

Катушка индуктивности

Самым распространенным элементом, обладающим индуктивностью, является катушка индуктивности. Что она из себя представляет? Как правило, для намотки используют каркас из диэлектрического материала. Он может быть круглый, прямоугольный или квадратный.

Если диаметр провода большой, а число витков незначительно, то можно обойтись и без каркаса. Несколько слов о самой намотке, она может быть:

  • однослойной или многослойной;
  • провод может быть одножильным или многожильным;
  • есть несколько способов намотки (внавал, универсал и подобные);
  • сами секции нередко делают раздельными;
  • для увеличения индуктивного сопротивления катушки индуктивности добавляют ферромагнитный сердечник, который перемещается внутри корпуса
  • относительно катушки, оказывая влияние на магнитное поле;
  • чтобы индуктивность понизить, используют диамагнитный сердечник.

От чего зависит индуктивное сопротивление

Прежде чем ответить на поставленный вопрос, следует отметить, чем отличается активное и индуктивное сопротивление. При включении в постоянную цепь активного сопротивления произойдет изменение величины тока на этом участке.

На самом сопротивлении появится некое напряжение, свидетельствующее о наличии ограничения тока. Такое положение вещей будет сохраняться при включении и выключении питания.

Совсем иначе происходит при замене резистора на катушку индуктивности. При включении питания на катушке будет наблюдаться падение напряжения, свидетельствующее о затруднительном проходе тока. Через какое-то время падение напряжения снизится практически до нуля, что говорит о беспрепятственном проходе тока.

Ограничение может быть связано только с некоторым активным сопротивлением провода катушки. Такое состояние будет продолжаться до тех пор, пока питание не отключат. На катушке вновь появится напряжение, но обратное напряжению питания. Причем это напряжение может значительно превышать питающее напряжение.

Первое, от чего зависит индуктивное сопротивление, — частота изменения величины или направления тока. Второе – величина индуктивности самой катушки.

Отличие между индуктивным сопротивлением и обычным активным (омическим) заключается в том что при прохождении через катушку переменного тока в ней не происходит потеря мощности. Для постоянного тока индуктивное сопротивление равно нулю.

Вокруг точечного заряда всегда присутствует электромагнитное поле. При движении заряда, поле также перемещается. Причем это поле имеет свою инерционность, заставляя заряд двигаться прямолинейно. Чем больше зарядов скапливается, тем большую силу обретает поле. Так в одиночном проводнике сила поля будет одна, а скрученном в катушку проводе это электромагнитное поле будет намного сильнее.

В каких единицах измеряется

Впервые индуктивность была вычислена американским ученым-физиком Джоном Генри и была названа в его честь – Генри, сокращенно Гн. Диапазон индуктивности очень широк, в приведенной ниже таблице видно, какие производные существуют:

Кратные Дольные
Величина Название Обозначение Величина Название Обозначение
10 1 декагенри даГн daH 10 -1 децигенри дГн dГн
10 2 гектогенри гГн hH 10 -2 сантигенри сГн cГн
10 3 килогенри кГн kH 10 -3 миллигенри мГн mГн
10 6 мегагенри МГн MH 10 -6 микрогенри мкГн µГн
10 9 гигагенри ГГн GH 10 -9 наногенри нГн nГн
10 12 терагенри ТГн TH 10 -12 пикогенри пГн pГн
10 15 петагенри ПГн PH 10 -15 фемтогенри фГн fГн
10 18 эксагенри ЭГн EH 10 -18 аттогенри аГн aГн
10 21 зеттагенри ЗГн ZH 10 -21 зептогенри зГн zГн
10 24 иоттагенри ИГн YH 10 -24 иоктогенри иГн yГн

Первые две строчки производных в каждой части таблицы применять не рекомендуют, указывают либо в десятых или сотых долях генри, либо десятках и сотнях. В СИ используется указанное обозначение в других системах, таких как СГМС обозначение может отсутствовать, либо применяется статгенри ≈ 8,987552⋅1011 или абгенри.

Формула индуктивного сопротивления

Как на практике можно определить индуктивность. Вспомним, индуктивность – это, говоря упрощенно, связь между электрическим зарядом и скоростью его движения. Чтобы получить индуктивность равную 1 Гн, необходимо менять скорость тока в секунду так, чтобы создаваемая самоиндукция ЭДС была равна 1В.

Формула индуктивного сопротивления для синусоидального тока выглядит так XL = ω•L = 2•π•f•L, где XLиндуктивное сопротивление в Ом, ω – угловая частота, L – индуктивность катушки в Гн, f – частота тока в Гц.

Сопротивление катушки переменному току

Как видно из последней формулы, индуктивное сопротивление напрямую связано с индуктивностью и частотой. Кроме того, оказывают влияние следующие факторы:

  • число витков в катушке;
  • их способ намотки;
  • наличие или отсутствие сердечника, а также материал, из которого он сделан;
  • наличие других магнитных полей;
  • температура окружающей среды.

Как видно из определения, к переменному относится не только меняющийся по направлению ток. Это может быть однонаправленный ток с переменной составляющей, например, пульсирующий или импульсный. Только приняв во внимание все составляющие, влияющие на потокосцепление, можно определить точное значение сопротивление катушки индуктивности.

Расчёт индуктивного сопротивления катушки

Как видно из вышеперечисленного расчет сопротивления производится очень сложно. Порой теоретически даже невозможно точно произвести расчет из-за различных помех, создаваемых как самим устройством, так и расположенных рядом. Самый простой способ, помогающий определить индуктивное сопротивление определенной цепи – замерить проходящий через цепь ток и напряжение на концах цепи.

Однако полученный результат будет справедлив только для этой ситуации и условий, наблюдавшихся во время замера. Обычно нечасто требуется знать точное индуктивное сопротивление, а только при проекте и отладке некоторых систем. При замене катушек индуктивности существуют различные инструкции, помогающие без дополнительных расчетов определять индуктивное сопротивление. Кроме того, регулировочные элементы помогают добиваться необходимых показателей.

Где применяется катушка индуктивности

Свойства индуктивной катушки своеобразные, небольшая доработка добавляет ей новые свойства, что делает ее весьма востребованной. Рассмотрим лишь некоторые области, где она с успехом нашла свое применение:

  1. 1. Конечно, это сама электротехника. Сочетания катушки с резистором или конденсатором делает ее способной задерживать или пропускать определенные частоты.
  2. 2. В импульсной технике катушка индуктивности выступает в качестве накопителя энергии.
  3. 3. Соединенные определенным образом катушки образуют различные по назначению трансформаторы.
  4. 4. Катушка индуктивности дает возможность повышать напряжение постоянного тока.
  5. 5. Электромагнит – еще одно применение катушки.
  6. 6. Используются для выплавки металла в доменных печах.
  7. 7. Особенно в старых приемниках катушка часто выступала в качестве антенны.
  8. 8. Современные индукционные плиты никак не могут работать без катушки индуктивности.
  9. 9. Если сердечник катушки соединить с подвижным механизмом – получится отличный датчик движения.
  10. 10. Индукционные магнитометры имеют основным элементом катушку индуктивности.
  11. 11. Для ускорения частиц в лабораториях также применяют своеобразную катушку.
  12. 12. Специальные накопителя энергии не могут обойтись без этого элемента.

Это лишь основные области применения, но уже по этому списку видно, что катушка – хороший труженик. Рассмотрим некоторые области применения более подробно.

Катушка как электромагнит

Для получения электромагнита используют сердечник из магнитомягкого материала. Для этого подходят:

  • металлы: сталь, чугун;
  • сплавы железа с никелем или кобальтом.
Интересно. Если магнитопровод сделать цельным, тогда у него будут большие потери, поэтому его собирают из отдельных листов.

Электромагниты могут работать как от постоянного, так и переменного тока. Причем электромагнит постоянного тока может быть нейтральным, когда притягивающая сила образуется независимо от направления движения тока, и поляризованным. В этом случае используется две обмотки: основная и поляризующая. Основная создает магнитный поток, а вторая направляет его в нужном направлении.

Электромагниты, работающие на переменном токе, вырабатывают переменное магнитное поле, но на сердечник оно действует в одном направлении. Однако сила притяжения меняется от нуля до максимума. Частота притяжения вдвое выше частоты тока.

Катушка как источник ЭДС

Эта особенность используется в индукционных плитах. Катушка, расположенная прямо под плитой, при работе создает вокруг себя электромагнитные волны. Эти волны, воздействуя на материал кухонной посуды, нагревают ее. Причем сама плита остается достаточно холодной, нагревается лишь от самой посуды. Такие плиты перестают работать, если посуды на ней нет, что делает их безопасными в пожарном отношении.

Более мощные устройства используются на сталелитейных заводах. Доменную печь делают круглой и обвивают ее толстыми, обычно медными проводами. Когда по проводу пропускают ток большой мощности и частоты, создается мощное электромагнитное поле, воздействующее на металл, находящийся в печи. От действия этого поля металл нагревается и плавится.

Это же устройство, но меньшего размера используется, когда необходимо нагреть небольшой кусок металла, например, для ковки.

Катушки индуктивности в качестве трансформатора

В первых двух вариантах обычно используется одна катушка, но если соединить две и более катушки и по одной из них пропустить ток, то получится интересный момент. В этой катушке появится наведенная ЭДС. Она окутает все находящиеся в ее поле другие катушки и в них появится ток. Но это еще не все.

Регулируя число витков в других катушках, можно подобрать необходимое напряжение. То есть, число витков может увеличивать или уменьшать напряжение относительно напряжения, проходящего по рабочей катушке. Чтобы такая передача была более продуктивной, используют один из видов сердечника:

Конструкция сердечника особого влияния на трансформатор не оказывает, это больше предпочтение производителя. Осталось рассмотреть еще одну удивительную особенность катушки индуктивности – способность генерации.

Катушка индуктивности — элемент колебательного контура

Вспомним, что произойдет, если катушку, по которой идет ток, обесточить? На ее концах сразу начнет расти напряжение. Если параллельно катушке подключить конденсатор, то он будет забирать избыток заряда, а затем начнет разряжаться через катушку.

Другими словами, конденсатор станет источником тока. По катушке пойдет обратный ток, но когда конденсатор разрядится, ток по катушке все равно будет идти какое-то время, перезаряжая конденсатор.

Это похоже на детские качели. Если их раскачать и отойти, то они под действием инерции будут какое-то время продолжать качаться. «Раскачка» колебательного контура осуществляется за счет источника питания, а когда контур войдет в резонанс, то есть индуктивная и емкостная составляющие начнут работать слаженно, то реактивное сопротивление станет равно нулю.

Еще это называют полосой пропускания. Такое свойство часто используется в фильтрах частот.

Это лишь некоторые особенности, связанные с индуктивностью, но этого достаточно, чтобы понять – индуктивность – одна из многогранных особенностей электрической энергии, без которой в современном мире не прожить.

Источник

Оцените статью
Всё о бурение