Электрическая цепь рисунок сложный

1. Теория: Законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Сложная электрическая цепь

Сложной называется цепь, состоящая из нескольких контуров, и содержащая несколько источников ЭДС. Пример сложной цепи показан на рис. 19. Цепь содержит два источника ЭДС и несколько резисторов. В схеме можно выделить несколько контуров.

Перед началом рассмотрения данной темы необходимо повторить свойства параллельного соединения резисторов.

Рис. 19. Сложная электрическая цепь

Контуром называется любой замкнутый участок электрической цепи. В данной схеме можно выделить три контура: контур a, b, f, e, a, контур b, c, d, f, b и контур: a, c, d, e, а.

Расчет сложных цепей ведется с применением первого и второго законов Кирхгофа. Первый закон Кирхгофа был рассмотрен при изучении параллельного соединения резисторов. Второй закон Кирхгофа гласит: алгебраическая сумма ЭДС, входящих в контур равна алгебраической сумме падения напряжения на элементах этого контура.

Обычно, требуется найти значения токов во всех ветвях, если известны значения ЭДС всех источников и величина всех сопротивлений.

Для решения этой задачи требуется составить и решить систему уравнений. Число уравнений, входящих в систему, равно числу неизвестных токов. Для рассматриваемой схемы потребуется три уравнения, т.к. в схеме три ветви и, соответственно три тока, которые нужно найти.

Расчет сложных цепей производится по определенному алгоритму:

1. Прежде всего, произвольно обозначаем направление токов в ветвях (см. рис. 19). Мы пока не знаем, в какую сторону направлены токи, обозначаем направление токов наугад. Позже, решение задачи укажет нам на ошибку, если она допущена.

2. По первому закону Кирхгофа составляем (n-1) уравнений, где n – число узлов. В нашей схеме два узла: это точки b и f. Для узла b, по первому закону Кирхгофа, запишем: , т.к. все три тока направлены к узлу b. (На самом деле такой вариант невозможен. Не может быть, чтобы были токи, подходящие к узлу и не было токов, отходящих от узла. Но сейчас это не имеет значения.)

3. Всего нужно составить 3 уравнения (по числу неизвестных токов). Недостающие уравнения составим по второму закону Кирхгофа для двух любых контуров. Предварительно договоримся, что обход по контуру при составлении уравнения будем совершать по часовой стрелке. Термин обход по контуру следует понимать так: Выбираем на контуре любую точку и начинаем двигаться вдоль контура. «По дороге» записываем встречающиеся на пути ЭДС (Е) и напряжения на резисторах.

ЭДС входит в уравнение с плюсом, если направление стрелки источника совпадает с направлением обхода по контуру. В противном случае запишем его со знаком «минус».

Падение напряжения на сопротивлении (U=I•R) входит в уравнение с плюсом, если направление тока в резисторе совпадает с направлением обхода.

Для контура a, b, f, e, a, запишем:

4) Объединяя составленные нами уравнения, получим систему уравнений:

5) Теперь дело за малым. В систему уравнений нужно подставить известные из условия задачи величины и решить систему относительно токов. Будут получены числовые значения токов.

Если ток получается со знаком «минус», значит, мы неправильно указали его направление и, на самом деле, он протекает в направлении, противоположном, указанному на рис.19.

Чем сложнее схема, тем больше уравнений в системе и тем сложнее ее решить.

Источник

Читать так же:  Приспособление для чистки велосипедной цепи
Оцените статью
Всё о бурение