Эдс равна сумме падений напряжений в замкнутой цепи

III. Основы электродинамики

Тестирование онлайн

Закон Ома для замкнутой цепи

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

,
где величина падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность — сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока — отношение полезной мощности к полной

Источник ЭДС

Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС — от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент — химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).

Генераторы — создают ток за счет расходования механической энергии.

Термоэлементы — используют энергию теплового движения заряженных частиц.

Фотоэлементы — создают ток за счет энергии света.

Соединение источников тока*

Рассмотрим n одинаковых источников ЭДС

Правила Кирхгофа**

Для расчета сложных разветвленных цепей, которые нельзя свести к эквивалентной цепи, используют правила Кирхгофа:

1) Алгебраическая сумма сил токов, сходящихся в узле равна нулю.

2) Алгебраическая сумма падений напряжений в любом простом замкнутом контуре равна алгебраической сумме ЭДС, которые есть в этом контуре.

Источник

Второй закон

Второй закон Кирхгофа

  • Алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре.
  • Алгебраическая сумма падений напряжений в замкнутом контуре равна сумме действующих ЭДС в этом контуре. Если в контуре нет источников электродвижущей силы, то суммарное падение напряжений равно нулю.
  • Алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю.
  • Алгебраическая сумма падений напряжений на пассивных элементах равна алгебраической сумме ЭДС и напряжений источников тока, действующих в этом контуре.

Т.е. падение напряжения на R1 со своим знаком плюс падение напряжения на R2 со своим знаком равно напряжение источника эдс 1 со своим знаком плюс напряжение на источнике электродвижущей силы 2 со своим знаком. Алгоритм расстановки знаков в уравнениях по закону Кирхгофа описан на отдельной странице.

Уравнение для второго закона Кирхгофа

Составлять уравнения по второму закону Кирхгофа можно разными способами. Самым удобным считается первая формула.

Так же можно уравнения писать в таком виде.

Физический смысл второго закона Кирхгофа

Второй закон устанавливает связь между падением напряжения на замкнутом участке электрической цепи и действием источников ЭДС на этом же замкнутом участке. Он связан с понятием работы по переносу электрического заряда. Если перемещение заряда выполняется по замкнутому контуру, возвращаясь в ту же точку, то совершенная работа равна нулю. Иначе бы не выполнялся закон сохранения энергии. Это важное свойство потенциального электрического поля описывает 2 закон Кирхгофа для электрической цепи.

Источник

Основные законы цепей постоянного тока

Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома

В этом случае UR = RI – называют напряжением

или падением напряжения на резисторе R, а – током в резисторе R.

При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

.

В этом случае закон Ома для участка цепи запишется в виде:

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис.1), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи:

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1) I — I1 — I2 = 0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rк в контуре; Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.

Для схемы (рис. 1) запишем уравнение по второму закону Кирхгофа:

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС равна нулю

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Рис.2

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 2):

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

.

Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

Схемы соединения приёмников электрической цепи.

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Источник

Читать так же:  Встроенная в цепь днк
Оцените статью
Всё о бурение