Диоды в цепях управления

Для чего ставят диод параллельно катушке, обмотке реле в цепи постоянного тока, в чем смысл.

На электронных схемах, где стоит электромагнитное реле, можно заметить, что параллельно его катушке припаян диод. Этот диод подсоединяется к обмотке обратным подключением. То есть, плюс диода (он же анод) будет лежать на минусе источника питания схемы, а минус диода (он же катод), будет находится на плюсе питания. Как известно, при таком способе подключения диода к питанию полупроводник находится в закрытом состоянии, он через себя не проводит электрический ток. Тогда возникает вопрос, а зачем он тогда нужен, если он работает как обычный диэлектрик?

А дело всё в том, что любая катушка, намотанная обычный образом (провод мотается в одном направлении) имеет помимо электрического сопротивления и индуктивность. Вокруг катушки при прохождении постоянного тока образуется электромагнитное поле. А в момент снятия напряжения с катушки, та энергия, которая была аккумулирована в этом электромагнитном поле резко преобразуется опять в электрическую. При этом на концах катушки появляется высоких разностный потенциал. То есть, проще говоря, в момент отключения от катушки питания на ней образуется кратковременный электрический всплески напряжения. Причем, этот всплеск ЭДС (электродвижущей силы) может в несколько раз превышать напряжение питания, которое ранее было подано на обмотку.

Такие скачки увеличенного напряжения, которые образуются на различных катушках, в том числе и на обмотке реле, способны негативно влиять на чувствительные элементы электронной схемы. Например, этот скачок легко может создать электрический пробой различных маломощных транзисторов, микросхем и т.д. Либо же это кратковременное увеличение напряжения может в момент процессов переключения реле вводить в электронную схему различные искажения, погрешности, плохо влиять на измерительные узлы и т.д. Одним словом явление возникновения подобных импульсов увеличенного напряжения – это плохо для любой электронной схемы.

Читать так же:  Опалубка для ленточного фундамента в а

А как же обычный диод может защитить от таких вот ЭДС скачков? Дело в том, что генерация ЭДС индукции имеет противоположную полярность, относительно подаваемого напряжения питания на катушку. Вначале мы на один конец катушки реле подавали плюс, а на второй – минус. При снятии напряжения питания с катушки полюса изменятся. Где был плюс, появится минус, а где был минус, появится плюс. Если наш защитный диод при одной полярности, когда идет питание катушки, находится в закрытом состоянии, работая как диэлектрик, то при другой полярности он уже будет переходить в открытое состояние. Другими словами говоря, при нормальной работе реле диод не будет себя проявлять как функциональный элемент, а при возникновении ЭДС индукции на катушки реле он сразу же станет проводником и замкнет этот импульс увеличенного напряжения на себе.

Может возникнуть вопрос. Если диод берет (замыкает) всю энергию ЭДС индукции катушки реле на себя, то не выйдет ли он от этого из строя (не сгорит ли)? Дело в том что у обычных катушек реле не столь большая энергия, что аккумулируется на ней в виде электромагнитного поля. Эта энергия имеет импульсный, одноразовый характер. Причем, при ЭДС индукции опасно именно увеличенное напряжение (относительно напряжения питания), токи же в этом импульсе достаточно малы. Задача диода нейтрализовать именно импульс увеличенного напряжения. Да и самый обычный, распространенный диод, такой как 1N4007 способен выдерживать обратное напряжение аж до 1000 вольт и прямой ток до 1 ампера (ток импульса намного меньше).

А какие диоды нужно ставить параллельно катушке реле, чтобы защитить электронную схему от подобный скачков напряжения ЭДС индукции? Как я только что уже сказал, энергия обычного маломощного реле (да и средней мощности) не такая уж и большая. Опасен именно сам увеличенный по напряжению импульс. Если питание катушки было, например, 12 вольт постоянного тока, то этот импульс может быть в несколько раз больше (ну пусть до 150 вольт, не больше). Токи, которые могут быть при этом импульсе могут иметь величину единицы и десятки миллиампер. На ток влияет диаметр провода, и его длина в катушке. Чем тоньше диаметр, и чем больше намотка, тем меньше ток. С напряжением наоборот. Чем больше витков в катушке, тем выше напряжение будет при ЭДС индукции.

Читать так же:  Фундамент лента с плитой сверху

Если не вдаваться в расчеты, то поставив на катушку обычного маломощного реле кремниевые диоды типа 1N4007 вы не ошибетесь. Их вполне хватит, чтобы надежно защитить электронную схему от подобный ЭДС импульсов, возникающих из-за переключающихся процессов.

Источник

Диодные схемы коммутации

Диоды могут выполнять операции коммутации и цифровой логики. Прямое и обратное смещение переключает диод между состояниями низкого и высокого сопротивления, соответственно. Таким образом, диод служит коммутатором.

Логика

Диоды могут выполнять цифровые логические функции: И и ИЛИ. Диодная логика использовалась в ранних цифровых компьютерах. Сегодня она находит только ограниченное применение. Иногда бывает удобно сформировать один логический элемент из нескольких диодов.

Диодный элемент И показан на рисунке выше. Логические элементы имеют входы и выход (Y), который является функцией входов. На входах элемента может быть высокий логический уровень (логическая 1), скажем, 10 В, или низкий логический уровень, 0 В (логический 0). На рисунке логические уровни генерируются кнопками. Если кнопка отжата, входной сигнал – высокий (1). Если кнопка нажата, она соединяет катод диода с землей, что соответствует низкому уровню (0). Выход зависит от комбинации входов A и B. Входы и выход обычно записываются в «таблице истинности» (рисунок (c)) для описания логики элемента. На рисунке (a) на всех входах высокий логический уровень (1). Это записано в последней строке таблицы истинности (c). На выходе, Y, высокий логический уровень (1) из-за напряжения V+ на верхнем выводе резистора. На него не влияют разомкнутые ключи. На рисунке (b) ключ A подтягивает катод подключенного диода к низкому уровню, подтягивая к низкому уровню (0,7 В) и выход Y. Это записано в третьей строке таблицы истинности. Вторая строка таблицы истинности описывает выход с ключами в состояниях, противоположных тем, что изображены на рисунке (b). Ключ B подтягивает диод и выход к низкому уровню. Первая строка таблицы истинности записывает Выход=0 для низкого логического уровня (0) на обоих входах. Данная таблица истинности описывает логическую функцию И. Итог: высокий логический уровень на обоих входах (и A, и B) дает высокий логический уровень (1) на выходе.

На рисунке ниже показан собранный на паре диодов логический элемент ИЛИ с двумя входами. Если на обоих входах логический уровень низкий (рисунок (a)), что имитируется «нижним» (разомкнутым) положением обоих переключателей, то выход Y подтягивается резистором к низкому уровню. Этот логический ноль записан в первой строке таблицы истинности (c). Если на первом из входов логический уровень высокий, как показано на рисунке (b), либо высокий логический уровень на другом входе, либо сразу на обоих входах, диод(ы) проводит ток, подтягивая и выход Y к высокому логическому уровню.

Логический элемент ИЛИ: (a) Первая строка таблицы истинности. (b) Третья строка таблицы истинности. (d) Логический элемент ИЛИ с источником питания, работающим от сети, и резервным аккумулятором на входах.

По схеме логического элемента ИЛИ резервная аккумуляторная батарея может быть соединена с источником постоянного напряжения, работающим от сети, для питания нагрузки даже при пропадании напряжения в сети. При наличии напряжения в сети переменного тока нагрузку питает источник напряжения, работающий от сети; предполагается, что его выходное напряжение больше напряжения аккумулятора. В случае пропадания напряжения в сети напряжение на источника питания, работающего от сети, падает до 0 В; и нагрузку питает аккумулятор. Диоды должны быть соединены последовательно с источниками питания, чтобы предотвратить протекание тока от источника питания, работающего от сети, через аккумулятор, что может повлечь перезаряд аккумулятора при наличии напряжения в сети. Сохраняет ли ваш компьютер настройки BIOS после отключения питания? Сохраняются ли настройки и время на часах, работающих от сети, при отключении питания?

Аналоговый коммутатор

Диоды могут коммутировать аналоговые сигналы. Обратно смещенный диод, очевидно, является разрывом в цепи. Диод с прямым смещением является проводником с низким сопротивлением. Единственная проблема заключается в отделении сигнала переменного напряжения, который коммутируется, от управляющего сигнала постоянного напряжения. На схеме на рисунке ниже показан параллельный резонансный контур: индуктивность контура включена параллельно с одним (или более) конденсатором контура. Этот параллельный LC контур может быть фильтром преселектора в радиоприемнике. Он может определять частоту автогенератора (не показан). Цифровые линии управления могут управляться через интерфейс микропроцессора.

Диодный коммутатор: сигнал цифрового управления (логический ноль) выбирает конденсатор резонансного контура с помощью прямого смещения коммутирующего диода

Большой конденсатор, блокирующий постоянный ток, соединяет индуктивность резонансного контура с землей по переменному току, блокируя постоянный. Он должен иметь низкое реактивное сопротивление по сравнению с реактивными сопротивлениями параллельного LC контура. Он предотвращает замыкания постоянного напряжения на аноде с землей через индуктивность контура. Коммутируемый конденсатор резонансного контура выбирается путем подтягивания соответствующего входа цифрового управления к логическому низкому уровню. Это смещает коммутирующий диод в прямом направлении. Постоянный ток протекает от точки +5В через радиочастотный дроссель (RFC), коммутирующий диод и на землю через цифровое управление. Назначение радиочастотного дросселя (RFC) в цепи +5В состоит в том, чтобы предотвратить протекание переменного тока через источник +5В. Дроссель в цепи цифрового управления должен препятствовать протеканию переменного тока через внешнюю линию управления. Развязывающий конденсатор замыкает маленький переменный ток, протекающий через радиочастотный дроссель, на землю, обходя внешнюю линию цифрового управления.

При высоком логическом уровне (≥+5В) на всех трех линиях цифрового управления не выбран ни один коммутируемый конденсатор резонансного контура из-за обратного смещения на диодах. Подтягивание одной или более линий к низкому логическому уровню выбирает один или более коммутируемых конденсаторов резонансного контура, соответственно. Поскольку последующие конденсаторы подключаются параллельно с индуктивностью контура, резонансная частота уменьшается

Емкость диода, смещенного в обратном направлении, может оказывать влияние в схемах, работающих на очень высоких частотах и ультравысоких частотах. В этом случае для коммутации могут использоваться PIN диоды, имеющие меньшую паразитную емкость.

Источник

Оцените статью
Всё о бурение