Дифференцирующие цепи для чайников

19.2. Интегрирующие и дифференцирующие цепи

В импульсных устройствах задающий генератор часто вырабатывает импульсы прямоугольной формы определенной длительности и амплитуды, которые предназначаются для представления чисел и управления элементами вычислительных устройств, устройств обработки информации и др. Однако для правильного функционирования различных элементов в общем случае требуются импульсы вполне определенной формы, отличной от прямоугольной, имеющие заданные длительность и амплитуду. Вследствие этого возникает необходимость предварительно преобразовывать импульсы задающего генератора. Характер преобразования может быть разным. Так, может потребоваться изменить амплитуду или полярность, длительность задающих импульсов, осуществить их задержку во времени.

Преобразования в основном осуществляются с помощью линейных цепей — четырехполюсников, которые могут быть пассивными и актив­ными. В рассматриваемых цепях пассивные четырехполюсники не содер­жат в своем составе источников питания, активные используют энергию внутренних или внешних источников питания. С помощью линейных цепей осуществляются такие преобразования, как дифференцирование, интегрирование, укорочение импульсов, изменение амплитуды и поляр­ности, задержка импульсов во времени. Операции дифференцирования, интегрирования и укорочения импульсов выполняются соответственно дифференцирующими, интегрирующими и укорачивающими цепями. Изменение амплитуды и полярности импульса может производиться с помощью импульсного трансформатора, а задержка его во времени — линией задержки.

Интегрирующая цепь. На рис. 19.5 приведена схема простейшей цепи (пассивного четырехполюсника), с помощью которой можно выполнить операцию интегрирования входного электрического сигнала, подан­ного на зажимы 1-1 | , если выходной сигнал снимать с зажимов 2-2′.

Составим уравнение цепи для мгновенных значений токов и напря­жений по второму закону Кирхгофа:

Отсюда следует, что ток цепи будет изменяться по закону

Если выбрать постоянную временидостаточно большой, то вторым слагаемым в последнем уравнении можно пренебречь, тогдаi(t) = uвх(t)/R.

Напряжение на конденсаторе (на зажимах 2-2′) будет равно

(19.1)

Из (19.1) видно, что цепь, приведенная на рис. 19.5, выполняет опе­рацию интегрирования входного напряжения и умножения его на коэф­фициент пропорциональности, равный обратному значению постоянной времени цепи:

Временная диаграмма выходного напряжения интегрирующей цепи при подаче на вход последовательности прямоугольных импульсов показана на рис. 19.6.

Дифференцирующая цепь. С помощью цепи, схема которой приведена на рис. 19.7 (пассивного четырехполюсника), можно выполнять операцию дифференцирования входного электрического сигнала, поданного на зажимы 1-1′, если выходной сигнал снимать с зажимов 2-2′. Составим уравнение цепи для мгновенных значений тока и напряжений по второму закону Кирхгофа:

Если сопротивление R мало и членом i(t)R можно пренебречь, то ток в цепи и выходное напряжение цепи, снимаемое с R,

(19.2)

Анализируя (19.2), можно видеть, что с помощью рассматриваемой цепи выполняют операции дифференцирования входного напряжения и умножения его на коэффициент пропорциональности, равный постоян­ной времени τ = RC. Форма выходного напряжения дифференцирующей цепи при подаче на вход серии прямоугольных импульсов приведена на рис. 19.8. В этом случае теоретически выходное напряжение должно представлять собой знакопеременные импульсы бесконечно большой амплитуды и малой (близкой к нулю) длительности.

Однако вследствие различия свойств реальной и идеальной диф­ференцирующих цепей, а также конечной крутизны фронта импульса на выходе получают импульсы, амплитуда которых меньше амплитуды входного сигнала, а длительность их определяется как tи = (3 ÷ 4) τ = (3 ÷ 4)RС.

В общем случае форма выходного напряжения зависит от соотно­шения длительности импульса входного сигнала tи и постоянной вре­мени дифференцирующей цепи τ. В момент t1 входное напряжение при­ложено к резистору R, так как напряжение на конденсаторе скачком изменяться не может. Затем напряжение на конденсаторе возрастает по экспоненциальному закону, а напряжение на резисторе R, т. е. выходное напряжение, снижается по экспоненциальному закону и становится рав­ным нулю в момент t2, когда зарядка конденсатора закончится. При малых значениях τ длительность выходного напряжения мала. Когда напряжение uBX(t) становится равным нулю, конденсатор начинает разряжаться через резистор R. Таким образом формируется импульс обратной полярности.

Пассивные интегрирующие и дифференцирующие цепи имеют сле­дующие недостатки: обе математические операции реализуются прибли­женно, с известными погрешностями. Приходится вводить корректи­рующие звенья, которые, в свою очередь, сильно снижают амплитуду выходного импульса, т. е. без промежуточного усиления сигналов практически невозможныn-кратные дифференцирование и интегриро­вание.

Эти недостатки не свойственны активным дифференцирующему и интегрирующему устройствам. Одним из возможных способов реали­зации этих устройств является применение операционных усилителей (см. гл. 18).

Активное дифференцирующее устройство. Схема такого устройства на операционном усилителе приведена на рис. 19.9. Ко входу 1 подключен конденсатор С, а в цепь обратной связи включен резистор Roc. Так как входное сопротивление чрезвычайно велико (Rвх -> ∞), то входной ток обтекает схему по пути, указанному пунктиром. С другой сторо­ны, напряжение ивхОУ в этом включении очень мало, так как Кu -> ∞, поэтому потенциал точки В схемы практически равен нулю. Следовательно, ток на входе

(19.3)

Ток на выходе i(t) одновременно является зарядным током кон­денсатора С: dq= Сdu BX (t), откуда

(19.4)

Приравнивая левые части уравнений (19.3) и (19.4), можно написать -ивых(t)/Roc = С duвх (t)/dt, откуда

(19.5)

Таким образом, выходное напряжение операционного усилителя является произведением производной входного напряжения по времени, умноженной на постоянную времени τ = RОСС.

Активное интегрирующее устройство. Схема интегрирующего устройст­ва на операционном усилителе, приведенная на рис. 19.10, отличается от дифференцирующего устройства рис. 19.9 только тем, что конденсатор С и резистор Roc (на рис. 19.10 —R1) поменялись местами. По-прежнему Rвх -> ∞ и коэффициент усиления по напряжению Кu -> ∞. Следовательно, в устройстве конденсатор С заряжается током i(t) =uBX(t)/R1. Так как напряжение на конденсаторе практически равно выходному напряжению (φB = 0), а операционный усилитель изменяет фазу входного сигнала на выходе на угол π, имеем

(19.6)

Таким образом, выходное напряжение активного интегрирующего устройства есть произведение определенного интеграла от входного напряжения по времени на коэффициент 1/τ.

Источник

Что такое дифференцирующие и интегрирующие цепи?

Активные на ОУ и пассивные RC и RL дифференцирующие и интегрирующие цепи: схемы, осциллограммы и онлайн калькулятор расчёта постоянной времени цепи.

Святая простота! Что может быть проще?
А проще могут быть лишь чётко сформулированные определения дифференцирующей и интегрирующей цепей, не обременённые ни лингвистическими излишествами, ни всякого рода необязательными формулами.

Итак, полностью оправдывая свои названия:
Дифференцирующая цепь — это цепь, в которой мгновенное значение напряжения на выходе прямо
пропорционально дифференциалу входного напряжения;
Интегрирующая цепь — цепь, у которой мгновенное значение выходного напряжения не менее прямо
пропорционально интегралу входного напряжения.

Начнём с RC и RL дифференцирующих цепей.

Эти цепи решают две основные задачи преобразования сигналов:
1. Формирование импульсов малой длительности (укорочение входных импульсов), которые далее используются для запуска триггеров, одновибраторов и других устройств,
2. Выполнение математической операции дифференцирования (получение производной по времени) для устройств вычислительной техники, аппаратуры авторегулирования и т.д.


Рис.1.

Основной характеристикой данных цепей является постоянная времени цепи τ = rC, либо τ = L/r.
В общем случае сигнал на выходе цепи описывается следующей формулой:
U2 = τ ×d(U1-U2)/dt.
Однако на практике, если мы выбираем τ τ ×dU1/dt.

Приведём несколько поясняющих картинок.

На Рис.2 приведены осциллограммы напряжений на выходах дифференцирующих цепей, в зависимости от различных соотношений постоянной времени цепи τ и длительности входного импульса tи.

В начальный момент подачи входного импульса, напряжение на выходе Uвых практически моментально достигает амплитудного значения входного Uвх, а затем идёт относительно плавный спад до:
Uвх/√e ≈ 0,61Uвх за время, равное τ /2,
Uвх/e ≈ 0,37Uвх за время, равное τ ,
Uвх/e 2 ≈ 0,135Uвх за время, равное 2 τ ,
Uвх/e 3 ≈ 0,05Uвх за время, равное 3 τ ,
где e — это основание натурального логарифма ≈ 2,72.

Переходим к интегрирующим RC и RL цепям.

Интегрирующая цепь предназначена для формирования импульсов большой длительности, т. е. для удлинения или расширения импульсов, преобразования импульсов по интегральному закону, получения линейно изменяющегося напряжения. Отсюда и другое название интегрирующей цепи — удлиняющая цепь.


Рис.3.

Значение величины постоянной времени интегрирующей цепи ничем не отличается от дифференцирующих собратьев: τ = rC, либо τ = L/r.

Для корректного выполнения цепью интегрирующих функций должно выполняться условие:
τ >> Tи
, где Tи — длительность входного импульса. При соблюдении этого условия выходное напряжение U2 описывается следующей формулой: U2 = 1/ τ ×∫U1dt.

Продолжим уроки рисования.

На Рис.4 приведены осциллограммы напряжений на выходах интегрирующих цепей, в зависимости от различных соотношений постоянной времени цепи τ и длительности входного импульса tи.

В начальный момент подачи входного импульса, напряжение на выходе Uвых равно 0, после чего начинает расти со скоростью, обратно пропорциональной значению τ и достигает следующих значений:
Uвх×(1-1/√e) ≈ 0,39Uвх за время, равное τ /2,
Uвх×(1-1/e) ≈ 0,63Uвх за время, равное τ ,
Uвх×(1-1/e 2 ) ≈ 0,86Uвх за время, равное 2 τ ,
Uвх×(1-1/e 3 ) ≈ 0,95Uвх за время, равное 3 τ ,
где e — это по-прежнему основание всё того же пресловутого натурального логарифма ≈ 2,72.

Снять ограничения по выбору постоянной времени дифференцирующих и интегрирующих цепей (по отношению к длительности входного импульса) можно посредством применения операционных усилителей (Рис.5).

Рис.5 Схемы активных дифференциаторов на ОУ

Здесь всё по аналогии с пассивными цепями, только без ограничений по длительности входного импульса и, поскольку включение операционного усилителя инвертирующее – со знаком минус:
Uвых = – RC×dUвх/dt.
Уменьшение реактивного сопротивления конденсатора С при росте частоты приводит к синхронному повышению коэффициента усиления активного дифференциатора, что создаёт условия для возможного самовозбуждения устройства. Для того, чтобы этого избежать в схему активного дифференциатора часто вводят корректирующее сопротивление Rк (Рис.5 справа). Применение данного резистора ограничивает коэффициент усиления на BЧ, что, в свою очередь, обеспечивает более высокую динамическую устойчивость.
Для того чтобы не сильно пострадала точность преобразования, номинал корректирующего резистора Rк следует выбрать небольшим, как минимум в 100 раз меньшим, чем величина сопротивления резистора R.

Переходим к схемам интеграторов, построенных на операционных усилителях (Рис.6).

Рис.6 Схемы активных интеграторов на ОУ

Здесь тоже всё без изменений: Uвых = – ∫Uвхdt / (RC).

В отличие от дифференциатора, схема интегрирующего усилителя имеет высокую устойчивость, но за счёт отсутствия обратной связи по постоянному току, имеет склонность к дрейфу выходного напряжения. Связано это с ненулевым значением параметра смещения выходного уровня реального ОУ.
Ошибку напряжения сдвига можно уменьшить посредством включения параллельно конденсатору С корректирующего резистора Rк (Рис.6 справа), образующего совместно с входным резистором R ООС по постоянному току. Для сохранения точности преобразования номинал Rк как минимум в 100 раз должен превышать сопротивление резистора R.

Ну и под занавес приведём таблицу для расчёта значения величины постоянной времени дифференцирующих и интегрирующих цепей τ .
Как уже говорилось — это величина одинакова для обоих типов цепей и равна τ = rC, либо τ = L/r.
Незадействованные элементы при вводе данных можно оставить без внимания.

Источник

Читать так же:  Механический натяжитель цепи ваз 2104
Оцените статью
Всё о бурение