Что такое низкоомные цепи

Что такое комплексное сопротивление или импеданс

Электрический импеданс — это термин, относящийся к цепям переменного тока. Слово происходит от латинского impedіо (сопротивляться). Расчёт комплексного сопротивления или импеданса представляет собой важный этап разработки различных электрических и электронных устройств.

Что такое импеданс и его составляющие

Импеданс электрических цепей — это векторная (двумерная) величина, состоящая из двух независимых скалярных (одномерных) компонентов: активного и реактивного сопротивления. Он обозначается буквой Z и выражает противодействие, которое электронный элемент, схема или система оказывает переменному электротоку. Измеряется в омах.

Активное сопротивление (R) является мерой интенсивности противодействия движению электронов между атомами. Чем легче атомы отдают/принимают электроны, тем ниже этот параметр, выражающийся в положительных действительных числах. Реактивное сопротивление, обозначаемое буквой Х, представляет собой выражение степени, с которой электронный компонент, схема или система накапливает или высвобождает энергию при колебаниях тока и напряжения за каждый единичный цикл переменного тока. Импедансом часто называют модуль комплексного сопротивления, поэтому реактивное сопротивление выражается в так называемых «мнимых» омах. Оно характерно только для линий переменного тока.

Когда переменный электроток проходит через катушку индуктивности, накапливаемая энергия высвобождается в виде магнитного поля. В этом случае реактивная составляющая импеданса является индуктивной (обозначается +jXL). Чем быстрее меняется направление тока, тем ХL больше.

Однако энергия может запасаться и высвобождаться в виде электрического поля, тогда данный параметр будет емкостным (обозначается –jXC ). Когда ток меняет направление, конденсатор многократно заряжается и разряжается. Чем больше времени конденсатор заряжается, тем сильнее он противодействует электротоку. Поэтому чем быстрее меняется направление электротока, тем ниже емкостное сопротивление.

Читать так же:  Сколько стоят блоки для фундамента

Реактивное сопротивление обычно умножается на положительный квадратный корень из –1, который представляет собой единичное мнимое число j. Тогда комплексное сопротивление Z выражается как R + jXL или R – jXC. Следовательно, активное сопротивление R — это действительная часть комплексного импеданса, а реактивное Х — мнимая.

Левая половина координатной плоскости, представленной на рисунке выше, обычно не используется, поскольку на практике отрицательные сопротивления не встречаются. Индуктивное сопротивление указывается на положительной части линии мнимой оси, а ёмкостное — на отрицательной части линии.

Комплексное электрическое сопротивление фаз может быть определено как отношение электронапряжения к амплитуде электротока, что идентично закону Ома. Фаза импеданса является фазовым сдвигом, соответствующим отставанию электротока от электронапряжения.

Последовательность расчета компонентов импеданса

Найти импеданс или полное сопротивление последовательной цепи довольно просто, если в ней присутствует только какой-то один вид элементов. Импеданс идеального резистора соответствует его активному сопротивлению R, которое называется еще резистивным. Импеданс для катушки индуктивности — это мнимое реактивное сопротивление XL, а для конденсатора —ХС.

Если имеется активное сопротивление и один тип реактивного, тогда вычисления выполняются по формуле:

При наличии всех составляющих полное сопротивление или импеданс находим с помощью такого выражения:

Таким образом, комплексное входное сопротивление цепи выражается как R + jX, где j — мнимое число √(–1).

Для расчетов всех составляющих импеданса используются формулы:

Комплексное сопротивление и проводимости участков характеризуют замедление тока, которое связано с влиянием материала и формой резистора. Реактивное сопротивление X — это замедление тока из-за электрических и магнитных полей, противодействующих изменениям тока или напряжения. Этот параметр важен для конденсаторов и катушек индуктивности.

Определение импеданса

Рассчитать импеданс проще всего, если в цепи есть n резисторов, но нет катушек индуктивности или конденсаторов. Сначала измеряется сопротивление на каждом резисторе (или любом аналогичном компоненте). Найденные значения суммируются, если элементы соединены последовательно: R = R1 + R2 + … + Rn.

Результирующая величина для n резисторов, включённых параллельно, определяется следующим образом: 1/R = 1/R1 + 1/R2 + … + 1/Rn.

Если в цепи есть только индуктивная нагрузка или емкостная, импеданс будет соответствовать реактивному сопротивлению:

  • Для последовательно соединенных катушек индуктивности X = XL1+ XL2 + …
  • Для последовательно соединенных конденсаторов C =XC1 + XC2 + …
  • Для катушек индуктивности, соединенных параллельно X = 1/(1/XL1+ 1/XL2 …)
  • Для конденсаторов, соединенных параллельно: C = 1/(1/XC1+ 1/XC2 …)

С ростом частоты электротока сопротивление индуктивностей увеличивается, а конденсаторов уменьшается. Поэтому при их совместном использовании в электрической линии они уравновешивают друг друга. Чтобы найти общее реактивное сопротивление, надо вычесть одно значение из другого: X = |XC – XL|.

Величину импеданса можно вычислить для любой электроцепи переменного тока, состоящей из таких линейных пассивных элементов, как резисторы, индуктивности и конденсаторы. Для электроцепи с постоянным током не существует различия между импедансом и сопротивлением. Последний параметр можно рассматривать как импеданс, фазовый угол которого равняется нулю.

Видео по теме

Источник

2.Импеданс — полное электрическое сопротивление цепи переменному току.

Абсолютная величина (модуль) электрического импеданса определяется выражением

Полная цепь переменного тока — это цепь из генератора, а также R, C, и L

элементов, взятых в разных сочетаниях и количествах.

Для разбора проходящих в электрических цепях процессов используют полные

последовательные и параллельные цепи.

Последовательная цепь — это такая цепь, где все элементы могут быть

соединены последовательно, один за другим.

В параллельной цепи R, C, L элементы соединены параллельно.

2.Полная цепь оказывает переменному току сопротивление. Это сопротивление

называется полным (мнимым, кажущимся) или импедансом.

3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и

вычисляется не простым, а геометрическим (векторным) суммированием. Для

последовательно соединенных элементов формула импеданса имеет следующее

Z — импеданс последовательной цепи,

R — активное сопротивление,

XL – индуктивное и XC – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

импеданс изменяется с изменением частоты

тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода Т переменного тока. Если время, в течение которого

электрическое поле направлено в одну сторону (Т/2), больше времени релаксации τ какого-либо вида поляризации, то поляризация достигает своего наибольшего значения, и до тех пор, пока T/2>τ, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод T/2 переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть своего максимального значения. После этого диэлектрическая проницаемость начинает

уменьшаться с частотой, а проводимость — возрастать.

3) Электрический диполь. Электрическое поле диполя

Силы поля, совершающие работу можно выразить через напряжение:

Работа сил электростатистического поля не зависят от траектории , по которой перемещается заряд в этом поле. Такие поля называют потенциальными.

4.Токовый монополь— одиночный точечный заряд(например +).

Токовый диполь-мультиполь 1ого порядка=2 в 1 степени=2 источника тока(положительный и отрицательный).

+ —

Потенциал поля убывает на значительных расстояниях r от него пропорционально 1/r(в степени l), l=1, значит конечная формула равна 1/r(в квадрате).

Электрическое поле токового диполя:

5. Электробезопасность и надежность медицинской аппаратуры. Понятие о токах утечки. Единичное нарушение работы. Типы приборов по допустимым токам утечки, их обозначения, особенности.

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента. Для этого изолируют части приборов и препаратов, находящиеся под напряжением, друг от друга и от корпуса аппаратуры.

Надежность-способность изделия не отказывать в работе в заданных условиях эксплуатации и сохранять свою работоспособность в течении заданного времени.

При касании человеком корпуса аппаратуры через тело человека пройдет некоторый ток, называемый током утечки.

Единичное нарушение— отказ одного из средств защиты от поражения электрическим током.

Н-изделия с нормальной степенью защиты(стерилизаторы)

В- изделия с повышенной степенью защиты(электрокардиографы)

ВF- с повышенной степенью защиты и изолированной рабочей частью(стимуляторы)

CF- с наивысшей степенью защиты и изолированной рабочей частью(электрокардиостимуляторы)

6.Классы приборов по способу дополнительной защиты от поражения электрическим током, их обозначения, особенности. Понятие о занулении и заземлении приборов. Техника безопасности при работе с элетрическими приборами. В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:

А — изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала.

К изделиям этого класса относятся приборы для наблюдения за жизненно важными функциями боль­ного, аппараты искусственного дыхания и кровообращения и др.;

Бизделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала, либо вызывает необходимость немедленного использования ана­логичного по функциональному назначению изделия, находяще­гося в режиме ожидания.

К таким изделиям относятся системы, следящие за больными, аппараты для стиму­ляции сердечной деятельности и др.;

В — изделия, отказ которых снижает эффективность или за­держивает лечебно-диагностический процесс в некритических си­туациях, либо повышает нагрузку на медицинский или обслужи­вающий персонал, либо приводит только к материальному ущер­бу. К этому классу относится большая часть диагностической и физиотерапевтической аппаратуры, инструментарий и др.;

Г — изделия, не содержащие отказоспособных частей. Элек- тромедицинская аппаратура к этому классу не относится. Защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека от поражения электрическим током, если он прикоснулся к корпусу электроприбора, который из-за нарушения изоляции оказался под напряжением.

Защитное заземление — преднамеренное соединение с землей частей электроустановки. Применятся в сетях с изолированной нейтралью, например, в старых домах с сетями 220В. Защитное заземление значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления, и защитная аппаратура сработает эффективнее. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления. Применятся в новых домах.

любому человеку, имеющему дело с электричеством, надо помнить следующие положения:

— Очень опасно одновременное прикосновение двумя руками к двум оголенным проводам.

— Очень опасно прикосновение к оголенному проводу, стоя на земле, на сыром или цементном полу.

— Опасно пользоваться неисправными электрическими приборами. Электрические приборы должны периодически осматривать квалифицированные специалисты.

— Нельзя собирать, разбирать и исправлять что-либо в электрическом приборе, не отключив его от источника.

— Нельзя производить какие-либо операции с электрической аппаратурой, не выключив ее из сети.

7.Медицинская аппаратура должна нормально функциониро вать. Это требование, однако, не всегда выполняется, говоря точнее, такое требование не может выполняться сколь угодно долго если не принимать специальных мер.

Врач, использующий медицинскую аппаратуру, должен иметь представление о вероятности отказа эксплуатируемого изделия, т. е о вероятности порчи прибора (аппарата) или его частей, превышение или понижения допустимых параметров. Устройство, не отвечающее техническим условиям, становится неработоспособным. Отремонтировав, его можно сделать вновь работоспособным. Во многих случаях достаточно заменить лампу или резистор, чтобы изделие вновь функционировало нормально, однако может быть и так, что аппаратура оказывается настолько устаревшей и изношенной, что экономически нецелесообразно ее ремонтировать (восстанавливать). В связи с этим

медицинский персонал должен иметь представление о ремонтопри­годности аппаратуры и долговечности ее частей.

Способность изделия не отказывать в работе в заданных усло­виях эксплуатации и сохранять свою работоспособность в течение заданного интервала времени характеризуют обобщающим тер­мином надежность.

Для медицинской аппаратуры проблема надежности особенно ак­туальна, так как выход приборов и аппаратов из строя может при­вести не только к экономическим потерям, но и к гибели пациентов.

Способность аппаратуры к безотказной работе зависит от мно­гих причин, учесть действие которых практически невозможно, поэтому количественная оценка надежности имеет вероятност­ный характер. Так, например, важным параметром является ве­роятность безотказной работы. Она оценивается эксперимен­тально отношением числа N работающих (не испортившихся) за время t изделий к общему числу N0 испытывавшихся изделий:

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количе­ственным показателем надежности является интенсивность от­казов лямбда(t). Этот показатель равен отношению числа отказов dN за время dt к произведению времени dt на общее число N работаю­щих элементов:

Знак «—» поставлен в связи с тем, что dN 1 / 4 1234> Следующая >>>

Источник

Оцените статью
Всё о бурение