Анализ линейных цепей несинусоидального тока

Исследование электрических цепей несинусоидального тока

Цель работы: экспериментальная проверка методики расчета линейных электрических цепей при несинусоидальных воздействиях и исследование влияния индуктивности и емкости на форму кривой тока.

Пояснения к работе

Методика расчета линейных электрических цепейнесинусоидального тока состоит в том, что заданное несинусоидальное периодическое напряжение или ток источника аналитически или графоаналитически представляют в виде гармонического ряда Фурье, после чего выполняют расчет цепи по каждой гармонике отдельно и записывают результирующие значения мгновенных или действующих значений токов и напряжений на отдельных участках.

В общем случае периодическая несинусоидальная функция представляется рядом Фурье вида

где A0 — постоянная составляющая ряда Фурье или нулевая гармоника;

Если несинусоидальная периодическая функция f( t) имеет геометрически правильную форму и легко может быть представлена в виде аналитической функции, то ее разложение в ряд Фурье осуществляется аналитически согласно известным формулам. Результаты такого разложения приведены в справочниках.

При произвольной форме функции f( t) ее разложение в ряд Фурье осуществляется графоаналитическим методом. Этот метод основан на замене определенного интеграла суммой конечного числа слагаемых. С этой целью период несинусоидальной функции f( t) разбивают на n равных интервалов t= и интегралы заменяют алгебраической суммой n слагаемых. Постоянную составляющую A0 ряда Фурье, амплитуду синусной составляющей Ak k -ой гармоники ряда и амплитуду косинусной составляющей Ak k -ой гармоники находят из выражений:

A0 = = (11.2)

A k = (11.3)

Ak = (11.4)

Где: f(p) – значение несинусоидальной функции в конце p-го интервала (текущий индекс p принимает значения от 1 до n),

sin(k·p) (cos(k·p)) – значение синуса (косинуса) от аргумента в конце p-го интервала с учетом номера гармоники k.

Чем больше число интервалов, тем точнее результат разложения в ряд Фурье. На практике обычно достаточно разделить период на 24 или 18 интервалов.

Если несинусоидальная периодическая кривая симметрична относительно оси абсцисс, то на n равных интервалов разбивают полпериода и по формулам, аналогичным (11.2 – 11.4) находят гармонические составляющие ряда Фурье.

При замене синусного и косинусного рядов одинарным синусоидальным рядом фурье (11.1) используют следующие формулы:

Ak =, (11.5)

k = arctg, если Ak >0; k =180 o + arctg, если Ak (k) =k·XL (1) , XL (0) =0; XC (k) = XC (1) /k, XC (0) =. (11.9)

Из приведенных соотношений следует, что индуктивность подавляет высшие гармоники в составе кривой тока, делая ее по форме близкой к виду первой гармоники подаваемого напряжения источника. Емкость, наоборот, способствует увеличению высших гармоник в кривой тока, чем делает ее более искаженной в сравнении с кривой питающего напряжения.

Действующие значения несинусоидальных напряжений и токов:

u =,(11.10)

I =.(11.11)

Мгновенное значение несинусоидального тока равно сумме мгновенных значений токов всех гармоник:

Домашняя подготовка к работе

1. Согласно номеру варианта (табл.11.1) вычертить график несинусоидального напряжения источника (рис. 11.1 или 11.2), электрическую цепь для проведения исследований (рис. 11.3) и выбрать их параметры (табл.1).

Таблица 11.1. Параметры электрической цепи для исследований.

Источник

Vse_lekcii_TEMK / Лекция N 22. Линейные электрические цепи при несинусоидальных периодических токах

Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.

На практике к несинусоидальности напряжений и токов следует подходить двояко:

в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;

в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.

В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.

Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.

В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).

Характеристики несинусоидальных величин

Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):

Максимальное значение — .

Действующее значение — .

Среднее по модулю значение — .

Среднее за период значение (постоянная составляющая) — .

Коэффициент амплитуды (отношение максимального значения к действующему) — .

Коэффициент формы (отношение действующего значения к среднему по модулю) — .

Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) — .

Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) — .

Разложение периодических несинусоидальных кривых в ряд Фурье

Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.

При разложении в ряд Фурье функция представляется следующим образом:

.

Здесь — постоянная составляющая или нулевая гармоника; — первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.

В выражении (1) , где коэффициенты и определяются по формулам

;

.

Свойства периодических кривых, обладающих симметрией

Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .

Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .

Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .

Действующее значение периодической несинусоидальной переменной

Как было показано выше, действующим называется среднеквадратичное за период значение величины:

.

При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.

Пусть . Тогда

Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,

.

Аналогичные выражения имеют место для ЭДС, напряжения и т.д.

Мощность в цепях периодического несинусоидального тока

Пусть и .

Тогда для активной мощности можно записать

.

Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,

,

где .

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:

.

Аналогично для реактивной мощности можно записать

.

,

где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.

Методика расчета линейных цепей при периодических

Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС

(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.

Здесь .

Тогда, например, для тока в ветви с источником ЭДС, имеем

,

где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры и С постоянны.

;

.

Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.

Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:

ЭДС и токи источников раскладываются в ряды Фурье.

Осуществляется расчет цепи в отдельности для каждой гармонической.

Искомые величины определяются как алгебраические суммы соответствующих гармонических.

Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Что является причиной появления несинусоидальных токов и напряжений в электрических цепях?

Какие величины и коэффициенты характеризуют периодические несинусоидальные переменные?

Какие гармонические отсутствуют в спектрах кривых, симметричных относительно: 1) оси абсцисс; 2) оси ординат; 3) начала системы координат?

Достаточно ли для определения величины полной мощности в цепи несинусоидального тока наличие информации об активной и реактивной мощностях?

Для каких цепей справедлива методика расчета цепей несинусоидального тока, основанная на разложении ЭДС и токов источников в ряды Фурье?

Не прибегая к разложению в ряд Фурье, определить коэффициенты амплитуды и формы кривой на рис. 4.

Ответ: .

Определить действующее значение напряжения на зажимах ветви с последовательным соединением резистора с и катушки индуктивности с , если ток в ней . Рассчитать активную мощность в ветви.

Определить действующее значение тока в ветви с источником ЭДС в схеме на рис. 5, если ; .

Источник

Читать так же:  Амперметр включается в цепь с нагрузкой
Оцените статью
Всё о бурение