Активная мощность цепи синусоидального тока p составляет

Мощности в цепи синусоидального тока Активная мощность цепи синусоидального тока

Когда синусоидальное напряжение прикладывается к резистивной нагрузке, в ней возникает синусоидальный ток. При этом ток и напряжение совпадают по фазе, то есть оба они достигают положительных и отрицательных амплитудных значений одновременно (рис. 2.20).

Мощность, которая выделяется в чисто резистивной нагрузке определяется как произведение напряжения на ток. Кривую мгновенных значений мощности можно построить, перемножая мгновенные значения напряжения и тока, взятые попарно в различные моменты времени

Среднее значение мощности (она пульсирует с двойной частотой) выражается через действующие значения напряжения и тока на резисторе:

или через омическое сопротивление R в Омах

Она называется активной мощностью.

Реактивная мощность конденсатора

Когда конденсатор подключен к переменному синусоидальному напряжению, в нем возникает синусоидальный ток, опережающий напряжение на 90 о (рис. 2.21).

Мгновенная мощность, потребляемая конденсатором (как и любой другой цепью) определяется как произведение напряжения и тока:

График изменения этой мощности можно построить, перемножая попарно ординаты графиков u(t) и i(t), взятые в один и тот же момент времени. Полученная таким образом кривая (рис. 2.21) представляет собой синусоиду двойной частоты с амплитудой.

Когда p>0, конденсатор заряжается, потребляя энергию и запасая ее в электрическом поле. Когда p о (рис. 2.22).

Изменение во времени мгновенной мощности, потребляемой в катушке, может быть представлено на графике (рис. 2.22) путем перемножения мгновенных значений тока i и напряжения u. Положительная полуволна кривой мощности равнозначна подведению энергии к катушке. Во время отрицательной полуволны катушка отдает запасенную ранее энергию магнитного поля. В идеальной катушке потерь активной мощности нет. В действительности же возвращаемая энергия всегда меньше потребляемой из-за потерь энергии в активном сопротивлении катушки.

В идеальной катушке (при R=0) график мощности p(t) представляет собой синусоиду двойной частоты (рис. 2.22) с амплитудой

Это значение является максимальной мощностью, потребляемой или отдаваемой идеальной катушкой индуктивности. Она называется индуктивной реактивной мощностью. Средняя (активная) мощность, потребляемая такой катушкой, равна нулю.

На рис. 2.23а изображена произвольная пассивная цепь синусоидального тока с двумя зажимами для подключения источника питания (пассивный двухполюсник).

В общем случае ток и напряжение на входе этой цепи сдвинуты по фазе на угол :

Мгновенная мощность, потребляемая цепью от источника:

График изменения этой мощности представлен на рис. 2.23б вместе с графиками изменения тока и напряжения. Мощность колеблется с двойной частотой. Большую часть периода она имеет положительное значение, а меньшую – отрицательное. Отрицательное значение мощности свидетельствует о возврате части накопленной в конденсаторах и катушках энергии в питающий цепь источник энергии.

Среднее значение потребляемой мощности:

называется активной мощностью. Она характеризует среднюю скорость преобразования электрической энергии в другие виды энергии. Потребляемая в пассивной цепи активная мощность имеет всегда положительное значение. Она измеряется в ваттах (Вт).

Амплитуда переменной составляющей мощности:

называется полной мощностью. Она характеризует максимальную мощность, на которую должен быть рассчитан источник для питания данной цепи. Её иногда называют кажущейся, габаритной или аппаратной мощностью. Единицей её измерения является вольт-ампер (ВА).

Величина Q=UIsin 2 Xназывается реактивной мощностью. Она характеризует максимальную скорость обмена энергии между источником и цепью. Она может быть как положительной (при >0, т.е.в индуктивной цепи), так и отрицательной (при  16 / 26 1617181920212223242526> Следующая >>>

Источник

Активная, реактивная и полная (кажущаяся) мощности

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2 ) или

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2 )

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

Источник

3.4 Мощность в линейных цепях синусоидального тока

В линейных цепях синусоидального тока различают три вида мощности:

активная, измеряемая в Вт или кВт;

реактивная, измеряемая в варах и кварах;

полная, измеряемая в ВА и кВА.

Активная мощность — это мощность необратимого преобразования электрической энергии в другие виды энергии в резистивных элементах цепи. В источниках электрической энергия активная мощность Р рассчитывается по формулам:

(3.57)

(3.58)

где — действующее значение напряжения в ИЭЭ, В;

— действующее значение тока в ИЭЭ, А;

-комплекс действующего значения напряжения, В;

— комплексно-сопряженное значение тока, А;

— угол сдвига фаз между током и напряжением.

В резистивных элементах активная мощность определяется как по (3.57) и (3.58), так и по формуле:

где — сопротивление резистивного элемента, Ом;

— сила тока через него, А.

В реактивных элементах реактивная мощностьопределяется по формулам:

Полная мощность определяется по формуле:

где — комплексно-сопряженное значение тока, протекающего через соответствующий элемент, А;

— комплекс напряжения на этом элементе, В.

3.5 Переходные процессы в электрических цепях

Процессы перехода электрической цепи из одного установившегося состояния в другое называются переходными процессами. Они возникают в результате каких-либо переключений в цепи (коммутаций). Характер протекания переходных процессов зависит от параметров элементов цепи, схемы их соединения и начальных условий.

Рассмотрим, например, подключение простейшей цепи, состоящей из последовательно соединенных резистора с сопротивлением R и катушки с индуктивностью L, к источнику постоянной ЭДС Е (рис.3.8).

Токи и напряжения в цепи установятся не сразу, т.е. будут являться функциями времени. Их называют мгновенными значениями.

Процесс в такой цепи после замыкания ключа К однозначно определяется II законом Кирхгофа, записанным для мгновенных значений, т.е. уравнением:

,

где , ,

В результате подстановки получим неоднородное дифференциальное уравнение с постоянными коэффициентами:

.

Как известно, решение такого уравнения состоит из двух слагаемых:

,

где – частное решения неоднородного уравнения, которое будем называть принужденной составляющей. Она равна установившемуся значению тока, т.е. току, который установится в цепи после окончания переходного процесса;

–общее решения однородного уравнения (уравнения, в котором правая часть равна нулю), которое будем называть свободной составляющей.

Когда процесс в цепи установится, то в случае подключения цепи к источнику постоянной ЭДС постоянным (установившимся) будет и ток. Поэтому при i =const , получим di/dt = 0, UL = L (di/dt) =0. Это означает, что в установившемся режиме напряжение на индуктивности равно нулю, и, следовательно, для определения составляющей iпр можно составить расчетную модель (рис.3.9), в которой индуктивность закорочена (выброшена и заменена сопротивлением z =0). Поэтому расчет по этой модели дает:

.

Для нахождения общего решения однородного уравнения нужно, как известно из математики, составить его характеристическое уравнение и найти его корни.

,

откуда имеем один вещественный отрицательный корень , которому соответствует решение:

,

где A – неизвестная постоянная интегрирования дифференциального уравнения;

–так называемая постоянная времени, измеряемая в секундах;

t – текущее время от начала коммутации (от момента включения),

Складывая принужденную и свободную составляющие тока, получим:

. (3.59)

Осталось определить постоянную А. Она определяется из начальных условий.

Возникает естественный вопрос о том, что использовать в качестве известного начального условия. На интуитивном уровне понятно, что нужно использовать нечто такое, что было в цепи непосредственно до коммутации (момент t = 0 ) и, что в момент непосредственно после коммутации (момент t = 0+ ) не изменилось скачком, т.к. в полученном выражении (3.59) время t исчисляется от момента t = 0 = 0+, т.е. от момента непосредственно после коммутации.

Для электрических цепей в качестве такой величины может служить энергия, запасенная в электрических и магнитных полях тех устройств, которые содержаться в цепи. Такой выбор обусловлен тем, что энергия полей не может меняться скачком.

Принимая во внимание, что энергия магнитного поля катушки индуктивности равна:

,

, .

,

(3.60)

Условие (3.60) выражает собой первый закон коммутации: ток в индуктивности не может изменяться скачком.

Поэтому, кстати, при размыкании ветвей с индуктивностью между контактами выключателя в момент включения образуется искра (электрическая дуга), поддерживающая начальное значение тока.

Аналогично можно получить второй закон коммутации: напряжение на емкости не может изменяться скачком:

(3.61)

Условия (3.60) и (3.61) называют независимыми начальными условиями, т. к. все остальные начальные условия определяются по известным независимым условиям и уравнениям Кирхгофа, составленным для цепи.

Возвращаясь к рассматриваемой задаче устанавливаем, что цепь (рис. 3.8) содержит индуктивность. Следовательно, в качестве независимого начального условия нужно использовать значения тока в индуктивности непосредственно до коммутации. До коммутации цепь была разомкнута, следовательно:

.

В соответствие с (3.60) получаем:

.

Подстановка этого условия в (3.59) дает (t = 0):

, а т.к. , то.

Наконец, подставляя найденное значение постоянной А в (3.59), получим:

(3.62)

По уравнению (3.62) можно построить график (рис. 3.10) переходного процесса для тока в цепи.

Отметим, что кривая, описываемая уравнением (3.62), называется экспонентой, характерным свойством которой является то, что она теоретически бесконечно долго приближается к своему установившемуся значению . Однако, практически уже при ее отклонение от установившегося значения ничтожно мало. Поэтому обычно считают, что длительность переходного процесса находится в этих пределах, т.е.. А посколькузависит, как мы установили, от параметров цепи, то и длительность переходного процесса зависит от соотношения параметров цепи. Заметим также, что, если к экспоненте из ее начала (при) провести касательную, то на уровне установившегося значения она отсекает отрезок длиной.

Предположим, что нам нужно установить начальное значение напряжения на индуктивности. Это начальное значение является зависимым. Поэтому воспользуемся исходным уравнением, записав его для момента :

, откуда

, но,

поэтому .

В то время, как до коммутации ( цепь отключена от источника) мы имели

, т.е. .

Напряжение на индуктивности меняется в момент коммутации скачком от нуля до значения ЭДС цепи.

Нетрудно и определить , дифференцируя и умножая науравнение (3.62):

. (3.63)

График, построенный по (3.63) имеет вид, представленный на рис.3.11. Напряжение на индуктивности имеет вид импульса. Из графика, кстати, видно, что , а.

Рассмотренный метод расчета называется классическим. Существует много других методов, однако, все они основаны на использовании тех идей и закономерностей, которые вошли в суть классического метода.

При этом очевидно, что при рассмотрении переходных процессов в сложных цепях решению подлежит система дифференциальных уравнений, составленных по законам Кирхгофа для мгновенных значений.

Рассмотрим в качестве примера составление системы уравнений для расчета переходного процесса в цепи, изображенной на рисунке 3.12, где e(t) – в общем случае произвольная ЭДС.

Система уравнений имеет вид:

Поскольку в цепи протекает единый переходной процесс, то можно рассчитать процесс для какой-либо одной переменной, выразив все другие переменные через нее.

Выберем, например, в качестве исходной переменной напряжение на емкости uс, тогда:

по (3.67) имеем ;

по (3.65) имеет ;

по (3.64) получим ;

. (3.68)

Решение дифференциального уравнения (3.68) позволит определить uc(t) и затем найти все остальные переменные. Поскольку (3.68) – дифференциальное уравнение 2-го порядка, то его характеристическое уравнение всегда будет иметь два корня. При этом возможны следующие варианты:

;

;

корни комплексно-сопряженнные р1,2 0:

, . (3.69)

Для определения двух постоянных в любом из вариантов нужно знать

uс(0) и .

По (3.65) находим:

По (3.64) находим:

По (3.67) находим:

Подставляя соответствующие выражения для uс.св (в зависимости от вида корней характеристического уравнения) для момента времени t = 0 и найденные начальные условия в уравнения (3.69), определим неизвестные постоянные интегрирования и получим решение для uс(t), а затем по установленным связям найдем i1(t), i2(t), i3(t) и, при необходимости, .

В заключение отметим, что практически все объекты электротехники, радиотехники, электроники и системотехники работают в режиме переходных процессов. Поэтому понимание их сути и подходов к анализу очень важно для современного инженера.

Источник

Читать так же:  Ссангйонг кайрон грм цепь или ремень грм
Оцените статью
Всё о бурение